
DYNAMIXEL LIBRARY
MARKUS SCHNEIDER

April 2008

M a r k u s S c h n e i d e r M a r k u s . S c h n e i d e r @ h s - w e i n g a r t e n . d e

mailto:Markus.Schneider@hs-weingarten.de
mailto:Markus.Schneider@hs-weingarten.de

The Hardware
Bioloid Bus Interface

I order the usb to dynamixel bus interface from http://www.huvrobotics.com. With this board you can directly connect
from your PC to dynamixel components. This board uses an FTDI transceiver chip.

Drivers

I tested 2 different drivers. The first one was the D2XX from http://www.ftdichip.com/Drivers/D2XX.htm. See the In-
stallation Guides on the homepage for instructions. Unfortunately there are only binary versions of the driver available
and therefor it cannot be used for embedded systems like a linux on gumstix for example. There is a second driver - the
libftdi from http://www.intra2net.com/de/produkte/opensource/ftdi/. The header and sources are already included
in my software package. You only need to install libusb from http://libusb.wiki.sourceforge.net.

M a r k u s S c h n e i d e r
 D y n a m i x e l L i b r a r y

1

http://www.huvrobotics.com
http://www.huvrobotics.com
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.intra2net.com/de/produkte/opensource/ftdi/
http://www.intra2net.com/de/produkte/opensource/ftdi/
http://libusb.wiki.sourceforge.net
http://libusb.wiki.sourceforge.net

Software Framework
Serial Port

In order to use any arbitrary serial interface there is an abstract class called SerialPort. You must simply implement this
interface as you need it. Actually there are 3 implementations. SerialPort_D2XX, SerialPort_FTDI for the D2XX and FTDI
driver already discussed and SerialPortLogger, a class which could be used to protocol all traffic.

Connection & Packets

There is a class Packet, representing the instruction and status packets like described in the AX-12/AX-S1 manuals. These
Packets could be transmitted and received trough an instance of class Connection:

int main (int argc, char * const argv[])
{
 // create serial port
 SerialPort *port = new SerialPort_FTDI();

 // init connection
 Connection conn(port);

 // create a new packet:
 // dynamixel id 9
 // ping command
 // no parameters
 Packet *pkt = new Packet(9, INST_PING, NULL, 0);

 // print instruction packet to stdout: [0xff 0xff 0x9 0x2 0x1 0xf3]
 pkt->fprint(stdout);

 // transmit packet
 conn.write(pkt);

M a r k u s S c h n e i d e r
 D y n a m i x e l L i b r a r y

2

 // read packet
 conn.read(pkt);

 // print statuspacket to stdout: [0xff 0xff 0x9 0x2 0x0 0xf4]
 pkt->fprint(stdout);

 delete port;
 delete pkt;

 return 0;
}

AX12 & AXS1

All functionality of the AX-12 servos and the AX-S1 sensor modules are encapsulated in there classes. The name of the
methods correspond to the entries in the Control Table of the AX-12/AX-S1 manuals. All read/write operations to this
table are wrapped in get and set methods. For each call an instruction packet is sent and a status packet is expected.
Therefore you should not change the Status Return Level (Address 0x10). Here a simple example that displays the current
position and then moves to another:

#include <stdio.h>
#include "serialport_d2xx.h"
#include "serialport_ftdi.h"
#include "connection.h"
#include "packet.h"
#include "ax12.h"

int main (int argc, char * const argv[])
{
 int status;

 // create serial port
 SerialPort *port = new SerialPort_FTDI();

 // init connection
 Connection conn(port);

 // Get a new instance of AX12 with id 9
 // all packets should be transferd over the connection
 // initialized before.
 AX12 *m9 = new AX12(9, &conn);

 // get present position of ax12
 word position;
 status = m9->getPresentPosition(&position);

 // check for errors
 if(status < 0){
 fprintf(stderr, "[ERROR]: %d", status);
 return -1;
 }

 // print present position
 printf("Position of AX12 with id %d is %d", m9->getId(), position);
M a r k u s S c h n e i d e r
 D y n a m i x e l L i b r a r y

3

 // move to position 0x200 with speed 0x50
 status = m9->setGoalPositionSpeed(0x200, 0x50);

 // check for errors
 if(status < 0){
 fprintf(stderr, "[ERROR]: %d", status);
 return -1;
 }

 delete port;
 delete m9;

 return 0;
}

Logging

There is a class SerialPortLogger that simply log all communication to a filestream. It could be “wrapped around” a Serial-
Port instance.

...
#include "serialportlogger.h"

int main (int argc, char * const argv[])
{
 int status;

 // create serial port
 SerialPort *port = new SerialPort_FTDI();

 // logs all to stderr
 // SerialPort *logger = new SerialPortLogger(port, stderr);

 // logs all to the file `log.txt` and don't append on fopen()
 SerialPort *logger = new SerialPortLogger(port, "log.txt", false);

 // init connection
 Connection conn(logger);
	 ...

M a r k u s S c h n e i d e r
 D y n a m i x e l L i b r a r y

4

Sync Write

It is also possible to use Bioloids Sync Write feature. This is used for controlling many Dynamixels at the same time.
Many instructions can be transmitted by a single packet. Only instructions with the same length and addresses of the
control table could be used. To create such a packet there is a class SyncWritePacket. You can send this through the same
way like a normal packet described before, but there will be no status packet.

Most of the time goal position and speed needs to send, therefore i created a more high level class, AX12SyncPosition-
Speed, to do this:

// init connection
AX12SyncPositionSpeed swp(&conn);

// new packet:
swp.add(9, 300, 0x100); // set AX12 with id 9 to pos 300 with speed 0x100
swp.add(2, 10, 0x10); // set AX12 with id 2 to pos 10 with speed 0x10
swp.execute(); // send packet now.

// new packet:
swp.add(9, 100, 0x100); // set AX12 with id 9 to pos 100 with speed 0x100
swp.add(2, 180, 0x30); // set AX12 with id 2 to pos 180 with speed 0x30
swp.execute(); // send packet now.

M a r k u s S c h n e i d e r
 D y n a m i x e l L i b r a r y

5

AX12 / AXS1 Classes

M a r k u s S c h n e i d e r
 D y n a m i x e l L i b r a r y

6

