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Abstract. Today, robots are already able to solve specific tasks in lab-
oratory environments. Since everyday environments are more complex,
the robot skills required to solve everyday tasks cannot be known in ad-
vance and thus not be programmed beforehand. Rather, the robot must
be able to learn those tasks being instructed by users without any tech-
nical background. Hence, Learning from Demonstration (LfD) is one of
the essential topics to bring robots out of the lab moving towards every-
day robustness. The key property of an agent regarding a demonstration
learned skill is its ability of generalization, that is, applying a learned
skill to situations that differ from those during demonstration. In this
paper, we present a method to enhance the generalization capabilities
of an advanced new LfD framework by combining it with conventional
path planning.
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1 Introduction

Preparing robots to face everyday environments requires them to have a set of
predefined abstract skills, where abstraction is needed to generalize over similar
tasks. But is it possible to predefine all skills a robot needs during lifetime?
For example, setting the table consists of several simple pick and place tasks,
which the robot should be able to handle natively. But additionally, there are
underlying constraints such as the necessity of placing saucers on the table before
placing the cups, to mention only one.

Taking a closer look at the problem, the conclusion is that it is impossible
to predefine all needed skills for complex everyday environments. Robots will
have to acquire them during lifetime fulfilling the requirement of reproduction
in situations that differ from those during demonstration. Such a skill aquisition
could be realized in different ways. Programming or describing by any kind of
programming or description language is not suitable for daily use, especially
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not for users without profound computer knowledge. Verbal robot instruction
is an interesting, but comparatively small research area [Bug03] and should be
treated as an extension to other techniques. Since even humans tend to learn by
following examples rather than verbal instructions, many research groups follow
a Learning from Demonstration (LfD) approach. This important field is also
addressed by on of the the robocup@home tasks, the CopyCat game, where the
robot has to reproduce a human demonstrated block movement in a game-like
setting.

1.1 Learning from Demonstration: Different Approaches

In general, the representation of a skill can take place on two abstraction lay-
ers: a low level representation (trajectory encoding) for generic motions and a
high level representation (symbolic encoding) for sequences of predefined actions
[BCDS08]. Trajectory encoding allows us to describe arbitrary motor primitives
and during training very often requires direct motion of the robot’s actuator by
a human trainer. High-level learning requires a predefined set of low-level skills,
but allows the description of a more abstract action sequence for more complex,
goal oriented tasks. LfD can address different abstraction layers. For instance,
a high-level learning approach can be based on the detection of spatio-temporal
task constraints, as presented in [EK08].

Since motor primitives have to be mastered before high-level skills can be
applied, most works are located in the area of low-level skills. A popular approach
is a demonstration of a motion by a human, followed by an optimization via
Reinforcement Learning. This area of research is mainly focused on advanced
robot actuators of high mechanical flexibility for handling low-level tasks which
are very difficult to control even for humans. Interesting examples are the ball
in cup [KMP08] and t-ball batting [PS07] problems.

There are also approaches to develop an integrated overall solution as pre-
sented in [EZRD02]. A demonstration is observed by a set of distributed sensors,
recording motions (including graspings) as well as object positions to allow a
detailed analysis of the human behavior. Recognizing elementary actions, the
demonstration is divided into semantically related segments and mapped onto a
sequence of predefined symbols. After further processing, this abstract represen-
tation can be mapped onto low-level skills of suitable robotic systems realizing
both, reproduction of complex skills on changing environments and changing
robotic embodiments.

Another powerful technique is the low-level time-depending observation of
the actuator’s end effector relative to each object in the task [Cal07,CB08]. After
a couple of demonstrations, the time-depending variations between demonstra-
tions are modelled by Gaussian Mixture Regression (GMR). In the reproduction
phase, the generated trajectories relative to each object are weighted anti propor-
tional to their variance. The reproduction can now be generated in compliance
to the variations, successfully handling new situations where the objects can be
placed at arbitrary positions. The first part of our work is based on this approach
with the difference that we use Gaussian Processes (GP) instead of GMR.
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1.2 Generalization Issue

Beside robustness, a demonstration learned behavior is evaluated by its applica-
bility to situations that differ from those during demonstration. The abstraction
capability of a GP based LfD framework is strong. After three or four demon-
strations, the robot will solve the demonstrated task successfully in a scene with
objects being repositioned arbitrarily. As a weakness of this method, the gen-
eralization capability ends at the point where objects or obstacles occur which
have not been present or relevant during demonstration. This kind of objects is
ignored by the motion plan what may cause collisions. We address this prob-
lem with our extended and combined method. It enhances the learned skill by
expanding the class of situations the skill can be applied to.

2 Methods

2.1 Gaussian Process Models

In recent years, Gaussian Processes became very popular in the context of ma-
chine learning for regression and classification problems [RW06]. They are pow-
erful tools to solve non-linear problems while requiring relatively simple linear
algebra only. The Gaussian Process theory provides a very natural way to define
a prior distribution over (regression) functions. In the standard non-linear re-
gression problem, we try to estimate a latent function f(x) given input variables
x ∈ RD and noisy observed target values y ∈ R modeled as y = f(x) + ε, where
ε ∈ R is a random noise variable that is independent, identically distributed
(i.i.d.) for each observation. The training data set comprising n input points
together with the corresponding observations is denoted by D = {(xi, yi)|ni=1}.
The Gaussian Process regression model tries to learn the predictive distribution
p(f∗|x∗,D) of a new test output f∗ given a test input x∗. To simplify notation,
all training inputs {xi}ni=1 are collected in a so called design matrix X of size
D× n and we define the matrix X∗ and the vectors f∗,y in the same way. The
key in Gaussian Processes is to consider the training outputs y and the new
testing points (prediction values) f∗ as a sample from the same (zero mean)
multivariate Gaussian distribution. The predictive distribution is then again a
multivariate Gaussian distribution N (f̄∗, cov[f∗]) conditioned on the training
data with mean

f̄∗ = K∗(K + σ2
nI)−1y (1)

and covariance matrix cov[f∗]

cov[f∗] = K∗∗ −K∗(K + σ2
nI)−1K∗T , (2)

where I is the identity matrix,K ∈ Rn×n,Ki,j = k(xi,xj),K∗ ∈ Rn∗×n,K∗
i,j =

k(x∗i ,xj) and K∗∗ ∈ Rn∗×n∗ ,K∗∗
i,j = k(x∗i ,x

∗
j ). The function k(·, ·) is called co-

variance function, or kernel, and is used to construct the covariance matrices
K,K∗,K∗∗. We will write the Gaussian Process as GP(0, k(·, ·)) or simply GP.
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Typically, the covariance function depends on parameters ω which are called hy-
per parameter because they are determined in advance and not used to absorb
the training data information. A widely used covariance function is given by the
exponential of a quadratic form, namely the Squared Exponential (SE) to give

k(xp,xq) = σ2
f exp

(
−‖xp − xq‖

2

2l2

)
, (3)

with ω = (σn, σf , l)T defining the noise level, signal variance and characteristic
length scale respectively. We use p(y|X,ω) to obtain the log marginal likelihood
given by

log p(y|X,ω) = −1
2
yTK−1

y y − 1
2

log|Ky| −
n

2
log 2π, (4)

whereKy substitutesK+σ2
nI and |·| is the determinant. We then use a conjugate

gradient algorithm [NW99] to (locally) maximize the log marginal likelihood
function with respect to the hyper parameters.

The Gaussian Process Model described so far assumes a constant noise level.
Given a data set that requires a variable noise model would be able to correctly
estimate the mean value, but it would fail to correctly estimate the variance. We
therefore have to introduce a more flexible noise model called heteroscedasticity.
Replacing the constant noise rate σn by an input dependent noise function r(x),
the mean and covariance function of the predictive distribution changes to

f̄∗ = K∗(K +R)−1y and (5)

cov[f∗] = K∗∗ +R∗ −K∗(K +R)−1K∗T (6)

respectively. R is defined as diag(r), with r = (r(x1), . . . , r(xn))T , and R∗ =
diag(r∗), with r∗ = (r(x∗1), . . . , r(x∗n∗))T . We follow [GWB97] and use a second
independent Gaussian Process (the z-process denoted by GPz) to model the
log of the noise level giving z(x) = log(r(x)) = (z1, . . . , zn)T . The z-process
maintains its own independent covariance function kz(·, ·) and parameters ωz.
With z∗ as the GPz posterior prediction, we obtain the predictive distribution
p(f∗|X∗,D) = ∫ ∫

p(f∗|X∗,D, z, z∗)p(z, z∗|X∗,D) dz dz∗, (7)

where the last term prevents an analytical solution of the integral. A common
method is to approximate p(f∗|X∗,D) ≈ p(f∗|X∗,D, z̃, z̃∗), where z̃, z̃∗ =
arg maxz,z∗ p(z, z∗|X∗,D). We use the expectation-maximization (EM) algo-
rithm, introduced by [KPPB07], to iteratively estimate GPz and then combine it
with a noise free GP to estimate a heteroscedastic Gaussian Process. The whole
procedure follows the EM algorithm for the heteroscedastic Gaussian Process
Model as described in [KPPB07].
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2.2 The GP based Learning from Demonstration Framework

We use the same learning from demonstration framework as described in [CB08]
to encode a task and summarize the used methods. During a demonstration, sen-
sor information is collected together with a timestamp and stored as a state/ob-
servation ξ = (ξ(i)t , ξ

(i)
s ) ∈ RD. Here, ξ(i)t denoting the i-th temporal value ∈ R

and ξ(i)
s ∈ R(D−1) is the i-th vector of spatial values. A mapping from ξ

(i)
t to

ξ
(i)
s is called a policy and denoted with π. In our experiments we use a simple

timestamp t as the temporal value and the spatial value is represented through
coordinates in joint space (θ1, . . . , θk for the k motor encoders of the robot) or
task space (Cartesian coordinates and orientation of the end effector). Suppose
we have n demonstrations and each demonstration is resampled to a fixed size
of T , then the data set D of all observations will be of length N = nT , for-
mally D = {(ξ(i)t , ξ

(i)
s )|i = 1, . . . , N}. The policy used here maps from ξt to

ξs using p(ξs|ξt,D) = GP(·, ·)∀ ξt ∈ R in terms of a Gaussian Process. This
approach perfectly fits the requirements of an approximation in the context of
robots, namely generating continuous and smooth paths and provide a general-
ization over multiple demonstrations. The Gaussian Process covariance function
controls the function shape and ensures a smooth path and the fundamental
GP algebra calculates the mean over demonstrations. This reduces noise (intro-
duced by sensors and human jitter during the demonstration) and recovers the
underlying trajectory.

The key idea is to use the variations and similarities between demonstrations
to extract what is important to imitate. Assume a robot arm scenario where
the goal is to reach a specific end state (e.g. given 3D coordinates) and the
start state is chosen randomly. The trajectories will differ significantly at the
beginning, whereas the position should be more or less the same at the end. Such
a part of a trajectory with low variation is defined as a constraint because no
discrepancy is desired. The heteroscedastic Gaussian Process Model, as discussed
in section 2.1, allows us to encode both the trajectory and the variation between
the demonstrations.

In the training (encoding) phase, policies are created with respect to the
(absolute) joint angle trajectories θ and relative to all m ∈ M objects o(m)

detected in the environment. More precisely, the relative position of the robot’s
end effector to the initial position of each object (in Cartesian coordinates) is
calculated.

In the reproduction phase, a Cartesian trajectory estimation x̂(m) and a re-
lated covariance matrix Σ̂x(m) for each detected object1 is calculated by the
Gaussian Process policies, giving M constraints. These constraints are used
together with the joint angle estimation θ̂ and related covariance matrix Σ̂θ

to create a final policy which considers constraints in both, Cartesian space
and joint space. The projection from Cartesian space to joint space is done
with a pseudoinverse Jacobian algorithm that compensates the missing orien-

1 It is no problem if some of the objects from the training phase are not detected.
Constraints with respect to these objects will be skipped.
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tation information of the end effector [Lie77,CB08]. This can be accomplished
through an optimization of the Jacobian null space with respect to the demon-
strated joint angle trajectories (stay as close as possible to θ̂). The projection
is applied to both the trajectory estimations x̂(m) and the covariance matri-
ces Σ̂x(m) giving m additional joint space estimates θ̂(m), Σ̂(m). To retriev-
ing a generalized version of the trajectories, two distributions N (θ̂(i), Σ̂(i)) and
N (θ̂(j), Σ̂(j)) are assumed as independent and the Gaussian product property is
used as N (θ,Σ) = N (θ̂(i), Σ̂(i)) · N (θ̂(j), Σ̂(j)). It is not necessary to perform
the Gaussian product at each time step of the trajectory, because the Gaussian
Process already delivers the covariances between all data points of the whole tra-
jectory. All steps described here follow the procedure from [CB08,Cal07] with
the option to consider constraints in joint space only, task space only or joint
and task space.

Figure 1 shows the demonstration of a grasping and emptying task. The
resulting policies generated by the GP based framework are shown in Fig. 2.

(a) (b) (c)

Fig. 1: Demonstration of the grasping and emptying task. The first subgoal is to move
the robot arm in proper position in order to grasp the blue cup (a). Subsequently, the
arm has to move slightly besides the trash (b) to empty the cup into the trash (c).

2.3 Conventional Path Planning

So far, we considered learning from demonstration. A totally different problem
is given in a situation where the robot’s actuator starting pose and the desired
goal pose are already known in advance. Here, all we have to do is to find a
path from the start to the goal while avoiding obstacles. Path planning is the
search for a continuous sequence of actuator joint configurations between an
initial start configuration and a final goal configuration under the compliance of
certain constraints. The term motion planning refers to the same problem, but
usually describes a path parametrized by time (i.e. a trajectory).

There are several algorithms realizing path or motion planning by heuristic
search algorithms. One example are Rapidly-exploring Random Trees (RRT-



Combining Gaussian Processes and Conventional Path Planning 7

0 50 100
−400

−200

0

200

400

t

x(1
)

1
[m

m
]

0 50 100
−1000

−500

0

500

t

x(1
)

2
[m

m
]

0 50 100
−200

0

200

400

t

x(1
)

3
[m

m
]

(a) Relative to cup
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(b) Relative to trash

Fig. 2: The learned policies from a grasping and emptying task (similar to Fig. 1) relative
to the initial positions of the cup (a) and the trash (b) in Cartesian coordinates. We
can see that the movement relative to the cup is highly constrained between time steps
20 and 40. At this time, the end effector reaches the cup and grasps it. In contrast, the
movement relative to the trash is constrained at the end of the trajectory (time steps
85 to 100), when the arm is able to unload the cup.

Connect) where the search space is explored from both directions, the start
and the goal configuration, moving towards each other using a greedy heuris-
tic [KSL00]. We use this algorithm due to its speed and accuracy. It is avail-
able within OpenRAVE, a powerful planning environment for robotics, support-
ing most known robot arms and also providing visualization, simulation and
scripting interfaces [DK08]. Furthermore, OpenRAVE offers the possibility to
search for paths not only avoiding obstacles but also considering arbitrary, self-
programmed path constraints. For example, we can place a control function in
the planner which will be called on every search step. This function will be al-
lowing an explored joint configuration only if the end effector keeps a horizontal
position, achieving a trajectory suitable to move a cup filled with a liquid. Open-
RAVE also includes inverse kinematic solvers, offering the calculation of possible
joint configurations for given end effector poses.
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2.4 Combining both methods

An LfD oriented, GP based motion planning approach, as it was introduced
in 2.2, and the conventional approach described in 2.3 cannot be compared di-
rectly because they address different problems. In the LfD framework, we have
to extract constraints from demonstrations. Then, at the starting position when
applying a skill, the problem is to generate a trajectory considering these con-
straints in a new situation. Regarding classical path planning, at the starting
position we already know the initial and final joint configurations and the prob-
lem is to find a trajectory avoiding obstacles. What the methods have in common
is the type of result, they both generate trajectories.

A trajectory from the LfD framework was built considering variances related
to objects being present during demonstrations, but ignoring new objects in
new situations. On the other hand, a classically generated trajectory is only
considering the current state, but with all objects in the scene. It is obvious that
the strengths can be combined.

Taking a closer look on the motion plan from the example in Fig. 3, we can
see that there are low constrained regions (large variance) at the beginning and
between time steps 60 and 80 regarding both objects (cup and trash). They refer
to the first motion towards the cup and the motion towards the trash after the
cup was grabbed. These are small regions regarding time, but they refer to the
largest spatial motions. Hence, they represent the regions of highest collision
risk regarding unknown objects. This is not an interpretation of this special
example only. It is typical that we have large variances at regions of large spatial
motions and small variances for motions of less spatial characteristics. A region
of large variance means that it is low constrained and that we could move on
many different paths to fulfill the required needs in the concerned segment.
This is the most important property exploited in our new approach. Receiving
a trajectory from the LfD framework, we cut out the regions of high variance
with the intention to plan a new trajectory for these segments. Since we know
the joint configurations at both ends of such a segment, we simply use classical
path search avoiding all obstacles within the scene. The result is a powerful
LfD framework, handling constraints from demonstrations as well as unknown
objects in new situations.

At some paths, when low constrained regions are reached, a GP based mo-
tion still keeps constraints like holding a cup in a horizontal position due to the
fact that the path is averaged over the demonstrations. Cutting the path at such
a position and handing over responsibility to OpenRAVE could cause a subse-
quent plan not taking care of the end effector’s angles, especially when obstacles
have to be avoided. Therefore, at the end of a highly constrained path, the end
effector’s pitch and roll angles are read and a path planning constraint func-
tion in OpenRAVE is initialized, effecting OpenRAVE to keep up the mentioned
angles.
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Fig. 3: The overall policy plotted for each DOF against time. This is the result of
merging policies related to individual objects (as shown in Fig. 2). In the merging
process, the smallest variances have the highest weights. Regions with low variance
in each DOF independently are marked red. Green denotes the intersection of low
variance regions for all DOFs. We cut out all non-green segments and generate new
trajectories there with OpenRAVE. Highly constrained regions (green) remain as they
are, since they represent the compliance of constraints learned from demonstration.

3 Results and Discussion

We tested the method learning grasping and emptying and a simple pick and
place task, each demonstrated four times on a Neuronics Katana arm. In situa-
tions where the learned skill had to be applied to, all known objects have been
repositioned and one or two new objects have been added to the scene. The
method performed well reproducing demonstrated skills considering new objects
successfully avoiding them as obstacles. When moving the cup towards the trash,
it was successfully held in a horizontal position in path segments generated by
OpenRAVE (cf. Fig. 4).

Problems can occur if new objects are placed very close to those being ma-
nipulated during demonstration. In such cases, the first position of a segment
with a high variance and thus the starting position for the classical path plan
done by OpenRAVE can already be a position where the robot arm collides with
an object. Hence, OpenRAVE will not be able to find a path. Nevertheless, this
is still a correct result. In such a case, it is simply not possible to reproduce the
skill without a collision in the manner how it was demonstrated. Then, this is not
a problem the low-level framework should deal with. A consequence might be to
delegate the problem to a higher, symbolic planning level, which, for example,
could decide that the obstacle should be moved aside first.
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(a) (b) (c)

Fig. 4: Reproduction of the grasping and emptying task. First with the known objects
only (a), then with an unknown obstacle (one trajectory split up into images b and
c). The paths generated by GP (red) and by OpenRAVE (green) are marked. The
situation in (a) can be solved by using only GP. The new situation with the obstacle
can only be solved by the extended new framework.

Naturally, there is still room for improvement. For example, the system could
determine automatically, whether the end effector angle constraints should be
handed over to OpenRAVE, as it is now done for every case.

In further experiments, it has to be investigated whether the technique to
cut out low constrained regions is applicable to a wide range of problem classes.
In these segments handed over to OpenRAVE there are still low variance regions
regarding single DOFs. Usually, segments being low constrained for a single DOF
only result from a lack of variation during demonstration. Nevertheless, maybe
there are some problem classes where this does not apply to.

Another open task is the interaction with a higher level symbolic planner
as already mentioned above or the integration into a classical three-tier robotic
architecture.

4 Conclusion

We showed that a GP based LfD framework combined with conventional path
planning methods can enhance the generalization capabilities of a robot regard-
ing learned skills. Thereby, strengths from both approaches are exploited. The
class of unknown situations the robot might face to apply learned skills was ex-
panded successfully by objects and obstacles which are not known from demon-
stration.

5 Future Work

Additional benefits could be derived from the usage of a robotics learning frame-
work. Instead of relying on a single learning technique to plan motions, learning
results could be improved by combining different methods. This could, for in-
stance, be a combination of Gaussian Processes and Human Trainer Feedback
or Reinforcement Learning.
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As a toolbox which provides the functionality to switch between multiple
learning and planning algorithms and to combine them, the Teachingbox
[ESCT09] could be used to reach this goal. Prospectively, the current motion
planning algorithm is going to be integrated into the Teachingbox framework.
Regarding real-world examples like the Katana robot arm, appropriate use cases
will have to be developed in this case.
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