
BOR3D: A Use-Case-Oriented

Software Framework for 3-D Object Recognition

Martin Bertsche, Tobias Fromm, and Wolfgang Ertel

Institute of Artificial Intelligence

Ravensburg-Weingarten University of Applied Sciences

88250 Weingarten, Germany

{martin.bertsche, fromm, ertel}@hs-weingarten.de

Abstract—3-D object recognition has become a major research
topic. New low-cost sensors hit the market making 3-D vision
affordable for anyone. On the software side, promising open-
source tools and libraries have prospered recently. The most
important one, regarding 3-D data processing, undoubtedly is
the Point Cloud Library (PCL). From an integrator’s point of
view, the main benchmarks applied to such a library are the
amount of use cases that can be implemented and the effort that
is entailed. We have noticed that the scientific community pays
little attention to these needs. We hope to change this situation
by proposing a framework that is primarily inspired by the PCL.
Clearly separating the roles of its users, it leaves integration to
the integrators and algorithms to the specialists. This way we
hope to provide a means for development teams to participate
in the recent advances even if they do not have a special focus
on machine vision.

I. INTRODUCTION

3-D imaging has become easy to use and affordable in the

last few years. This is due to the development of 3-D sensors

for applications in the gaming industry. As a result further

advancements within the field of 3-D object recognition are

flourishing. Research is driven forward by a large community

of scientists and software developers.

However, for sophisticated applications, appropriate soft-

ware development tools are required. Therefore, a software

framework is needed that permits the integration of the most

recent developments in a reusable and robust fashion. One

cannot afford to lose sound solutions due to minor software

issues.

Within the 3-D data processing field the Point Cloud Library

(PCL) [1] represents an effort to achieve these goals. It is

an open-source collection of libraries addressing the most

prominent areas in the field. It is well on the way in becoming

a virtual standard in point cloud processing by minimizing

incompatibilities and conversion issues.

The PCL provides an excellent basis for further research and

development. However, certain deficiencies remain consider-

ing user-friendliness and the reusability of high-level solutions.

Presently, inexperienced users looking for quick solutions to

their object recognition problem are faced with difficulties. In-

depth knowledge is required to apply the provided algorithms.

For 2-D object recognition the MOPED [2] framework is

rather specialized in its field of application. MOPED fulfills

the requirements of user-friendliness by not requiring detailed

knowledge of the underlying algorithms.

Knowing the versatility of the PCL as well as the usability

of MOPED, a new framework was designed for 3-D object

recognition uniting ease of use and flexibility. Another layer of

abstraction was added which accommodates a high-level, user-

friendly interface not only for the PCL, but for other libraries

as well. This new framework is named BOR3D (pronounced:

“bored”), an acronym for “Boilerplate Object Recognition

3-D”.

In this paper, we will apply the term use case to a certain

goal within the scope of 3-D object recognition. This for

example could be the recognition of a number of pre-trained,

non-occluded objects placed on a table. In Section IV this

exact use case is implemented and described in detail as a

showcase example.

The remaining paper is structured as follows: First, we refer

to previous work and projects with a similar methodology, but

aiming on different applications. Section III then reveals the

big picture as well as details of our approach. In Section IV

we will apply this to a concrete use case, while finally, in

Section V, we will give future prospects and possibilities of

BOR3D.

II. RELATED WORK

As indicated in the introduction, this work is primarily

inspired by the Point Cloud Library. It serves as a basis

providing algorithms and basic data structures. The PCL’s goal

is to offer state-of-the-art 3-D data processing algorithms. In

the past collaboration between developers has been difficult

due to software incompatibilities. Researchers are now able to

publish their findings in software using the PCL as a common

denominator. It delivers a fair amount of standardization by

introducing useful interfaces. A primary development philos-

ophy that the PCL developers are following is ”write once,

parametrize everywhere”1 It means that processing procedures

are developed only once for a given basic task. Adapting the

algorithm to specific environment should only be a matter of

parametrization. BOR3D is fully adopting this principle.

While the PCL is well endowed with the latest algorithms,

there is little guidance on how to combine and integrate them.

The main reason for this of course lies within the PCL’s

1Source: http://www.pointclouds.org/assets/rss2011/00 introduction.pdf,
page: 42



definition. Being a library instead of a framework it does not

impose any limitations on the way applications are designed.

MOPED is an open-source project, described by the authors

as a real-time object recognition and pose estimation system.

It can be considered a framework as it provides abstraction

from the algorithmic level. Thus, it pursues goals very similar

to ours with the difference in focus on 2-D object recognition.

Many papers use the term ”framework” for a general

approach. In this paper we denote that ”framework” always

refers to a software framework.

III. APPROACH

We start off with a top-down approach: The general task

performed when recognizing objects is to match input data

to model data. The simple perspective entails two separate

tasks: One is training, which means to generate model data

and to store it in a database. The other is to match the input

data acquired by a sensor with the trained data. We call this

recognition.

At this point all the inherent challenges are neglected.

We introduce methods as a place holder for the actual im-

plementation. Our framework needs to know a method to

perform training and recognition. The easiest way to picture

the semantics is the Strategy [3] design pattern. It is assumed

that for an object recognition problem there exist multiple

solutions. Based on a-priori knowledge the user chooses the

method which best suits the given problem.

A. User-Level Abstraction

The two pieces of self-explanatory C++ code below are to

illustrate our vision of a user-level interface provided by our

framework. It is designed to fulfil the following requirements:

(1) Using BOR3D only requires information about the given

use case such as the data which is generated by the sensors.

(2) Embedding object recognition in existing software must

have a small code footprint. (3) Providing parameters for the

processes needs to be done in a standardized fashion.

Example: Training

Training<MethodXY> training;

training.configure("training.cfg");

training.setObjectName("Object1");

training.newModel();

Example: Recognition

Recognition<MethodXY> recognition;

recognition.configure("recognition.cfg");

Results results = recognition.recognize();

We are aiming at a steep learning curve for beginners.

Choosing the correct method for training and recognition

can be challenging when faced with a wide range of them.

Therefore, the names of the methods must clearly indicate

their purposes.

The methods defined for the two processes need to be

compatible since we intend to use the data generated during

training for the recognition process. A simple solution is to

define a single method for model creation and recognition.

However we have seen that the training data of a given

method can often be used for multiple recognition approaches.

Ignoring these cases would impair the flexibility of our frame-

work. Therefore, a notion of compatibility is needed to find

valid combinations. Later on in this section we will see that

matching method pairs are easily discovered by comparing

certain attributes.

Theoretically, given a selection of use cases and correspond-

ing methods, we can now apply this framework. In order

to implement solutions for actual applications we need to

take into account that a user’s task will always be different

from the one a method was designed for. A method designer

has to make provisions by exposing a set of parameters for

fine-tuning purposes. By doing so we are in violation of our

predominant principle, to hide from the user as much of the

implementation’s details as possible.

However, up to now all object recognition algorithms rely on

assumptions regarding the data acquired. These assumptions

are encoded in the algorithms themselves as well as in the

parameters used for each processing step. The only way to

shape the parametrization in a user friendly way is to provide

adequate documentation. This documentation has to follow the

framework’s level of abstraction by describing the parameters’

influence on the processing result, or its dependence on input

data characteristics. Only then are users able to deduce the ap-

propriate settings without knowing the underlying algorithms.

This level of abstraction which we call the user level is de-

signed to be a beginner’s entry point to 3-D object recognition

providing an end-user programming interface that is fast and

easy to use. The guidelines we set for the methods’ interface

definition and documentation encourage the implementation of

reusable and flexible code.

B. Configuration-Level Abstraction

Key to the straight-forward programming interface as pro-

posed in Subsection III-A is the method place holder. We use

the notion of an underlying method to mask out the know-how

needed to implement software for object recognition use cases.

In this subsection we will continue this practice on another yet

lower level of abstraction that we call the configuration level.

A survey of recent 3-D object recognition approaches has

led us to a generalized view on the necessary steps involved.

As depicted in Figure 1 for both training and recognition we

isolated four general tasks that need to be performed. The

task of a user working on this level is to test different methods

for acquisition, preprocessing, Modelling, Description, Storage

and Matching for a given use case in order to create or

optimize a process. Therefore we require rapid exchangeability

of processing pipeline elements.

1) Acquisition: Acquiring 3-D data is the first step and

common to both processes. For a user-friendly framework it

is vital to offer a generalized interface for a wide variety of

acquisition devices.

2) Digression: PFH and VFH: For the generalized pro-

cesses’ remaining discussion we will take Point Feature His-

togram (PFH) [4] and Viewpoint Feature Histogram (VFH)



Fig. 1 – Generalized training and recognition processes.

[5] as examples for object recognition approaches to make

our classification of the tasks more tangible.

PFH describes, as its name implies, features of a point

inside a point cloud. Given its neighborhood, which is defined

by a sphere or a maximum number of neighboring points, a

histogram is computed which encodes local features of the

neighborhood. Scanning an object from multiple view points

during training and computing the PFH descriptors allows us

to piece together the resulting point clouds to form a single

3-D model. This process is called registration. We can then

use the PFH descriptors we already know and assign them to

points of the registered model or just compute new ones from

the model cloud.

For recognition using PFH we scan the current scene and

calculate its point descriptors. These can then be matched

with the descriptors of all objects in our training database.

After filtering the results considering the matches’ quality

and cumulation we receive potential correspondences between

points in our scan and points of our models. These correspon-

dences are used to align the models with the scan. For that

we use Iterative Closest Point (ICP) [6], the same technique

that is used for registration. Thus we are combining object

recognition and 6-DOF pose estimation.

Using VFH we can take a different approach that does

not rely on surface alignment. It is actually based on a

computationally faster modification of PFH called Fast Point

Feature Histogram (FPFH) [7]. During training the local

FPFH descriptors of the object’s segment are encoded in a

high-dimensional global descriptor. VFH also encodes infor-

mation about the point from which the object was viewed.

This is why during training we are able to store the viewpoint

along with the segment’s descriptor. This is to be repeated for

many different viewpoints per object.

Recognizing objects with VFH is basically the same process

as training. Here we need segmentation which is described

in Subsection III-B3. For all resulting segments the VFH

descriptor is computed and matched with the descriptors in

our training database. Filtering the match results with regard

to their quality we are able to retrieve not only the object but

also viewpoint information, permitting us to do 6-DOF pose

estimation.

3) Preprocessing: Both approaches discussed in Subsection

III-B2 require segmented point clouds for training, meaning

that the actual training data is a set of contiguous clouds that

only contain points belonging to the object being trained. The

reason for this is that the model data created during training

should not be polluted by information that does not describe

the object. For the recognition process the requirements of the

two examples are different.

VFH is relying on segmentation to provide candidate clouds

that can be compared to the database. Segmentation for

recognition however will be different to the segmentation

needed for training. In most cases there will not be a set-

up of the scene that is as well-defined as it is possible for

training environments. Segmentation for recognition purposes

has to cope with the fact that there can be multiple objects

in the scene and also with other problems like occlusion.

At the moment, to the authors’ best knowledge there are no

segmentation algorithms able to solve this problem generally.

However, there are many solutions for special cases like

objects on a tabletop or objects on a shelf. Therefore we

state that the choice of the segmentation algorithm is highly

dependent on the use case at hand.

In contrary to VFH, PFH can be applied to a point cloud of

the entire scene and does not require prior segmentation. The

reason for that has been provided when discussing the method

in Subsection III-B2. This does not imply that preprocessing

can be omitted completely for PFH.

Our preprocessing step is a place holder for multiple steps

performed on raw data. It accounts for the fact that most

object recognition approaches are either unable to use sensor

output directly or exhibit poor results concerning recognition

quality and processing time when used with such data. We

explained that choosing the correct preprocessing algorithm is

important for training and even more so for some recognition

methods. Our framework must therefore provide the capability

to exchange preprocessing algorithms easily for testing and

evaluation purposes.

4) Description and Modeling: As seen in Subsection

III-B2, PFH and VFH are very dissimilar approaches to object

recognition regarding the computations involved. However, the

data generated by both methods can be considered similar. For

that reason we are able to develop the simple and extendible

data layout depicted in Figure 2 that is able to support current

object recognition techniques.

During training, segments are created that contain a small

fraction of the amount of data captured by the sensor, ensuring

that the amount of memory necessary for storing them is

minimal. Storage efficiency is further increased by creating a

Fig. 2 – Generalized data layout.



registered2 model instead of saving each single shot. However,

since keeping the framework flexible is one of our primary

goals, we define that the 3-D portion of our data layout is

allowed to contain multiple point clouds.

3-D data is also the key to model compatibility since it

can be used to compute the various higher-level descriptors

such as PFH and VFH but also Signature of Histograms of

Orientation (SHOT) [8], FPFH or Spin Images [9] - just to

name a few. Of course training will usually be performed for

a certain method and therefore for a certain descriptor. So in

order to avoid recomputing higher-level descriptors whenever

starting a recognition process, we define the descriptor data

field. It is to contain the specialized descriptors used by the

method chosen for training.

The question whether a training method is compatible

with a recognition method is obviously answered here. If

the data description method used during training does not

match the description method used for the current scene,

then a comparison will be meaningless or even impossible

in the subsequent matching step. We define that the method

chosen for recognition always supersedes the method chosen

for training. This way we can define two cases in which the

database and the recognition algorithm are compatible: The

first case is when the same description method was chosen

for both training and recognition. If this is not the case, the

database must contain 3-D data which allows the framework to

recompute compatible model descriptions. We do not demand

but rather encourage the availability of 3-D data in the database

since this can consume high amounts of memory.

For VFH we explained that its abilities can only be fully

used when providing view point information in addition to a

segment’s descriptor. For such cases we chose to include a

meta data field in our layout. Meta data does not only come

in handy for VFH. A major reason for object recognition is

our desire to have robots manipulate or operate objects. Let

the object be a coffee maker for instance: If we want the

robot to serve us coffee we need it to be capable of pressing

the buttons. These however are not necessarily detectable with

the hardware being used. In this case their positions relative

to an object coordinate system can be stored in a meta data

object.

The description and modelling tasks of training and recog-

nition generally use the data provided by the respective pre-

processing step to create a higher level description of the data.

We already mentioned many of those methods throughout this

paper. These descriptions have a major advantage over plain

3-D data: They are easily compared to another description

of the same type. All of these methods have their advantages

and drawbacks especially when considered for different object

recognition use cases. By providing a generalized data layout

and defining modeling and description as place holders we

equip the user with the ability to quickly exchange the data

description method used for both of the processes.

2The process of piecing together shots taken from multiple view points is
called registration.

5) Matching and Storage: Making the training data persis-

tent is what we define as the storage task. However, discussing

the pros and cons of various data formats is not the goal of

this paper. We simply state that the framework is to support

multiple, preferably human-readable formats to persistently

store training results. We define this to be the task of an entity

we call the database.

Matching is the effort of comparing the descriptions stored

in the database to a description created from new sensor data.

In the context of our framework we define this to be a task of

the database as well. It is fed with the current scene description

as a query and we expect it to return corresponding matches

as results. The matching place holder stands for the method

how matching is performed. For 3-D data we would probably

use an octree data structure to perform nearest neighbour

searches. We can use the similar k-d tree to do the same

with k-dimensional descriptions. However, we can also think

of a support vector machine that is trained with classes that

represent our models. As for all steps introduced in this section

we demand that the choice of the actual implementation is

open to configuration.

6) Configuration: Having defined the general steps we

deem necessary for object recognition, we are able to explain

what a method actually is. A method is a configuration entity

for either training, recognition or both. It determines the

implementation used for each step. So it is only a continuation

of the Strategy design pattern, mentioned in Section III-A.

The added control given to users at the configuration level of

course comes at a cost. In contrast to the user level we demand

that the developer knows about the algorithms he configures

for each step. For instance it will not make much sense to

assign a preprocessing step not performing segmentation to a

recognition process if the following step is computing a VFH

descriptor. We intend to help developers during configuration

with documentation similar to the one offered at the user level.

C. Developer-Level Abstraction

On the developer level actual implementations of all the

processing steps are provided. For this level we require a

clean and simple set of rules on how to wrap an algorithm

for BOR3D. Only so our framework will be able to attract

scientists who wish to publish their latest findings. However it

must be emphasized that a good portion of the expert’s work

is in providing comprehensible documentation.

IV. A USE CASE SOLVED

We will now show the tabletop use case mentioned in the

introduction to describe the current state of our framework’s

implementation. First we briefly explain how our implemen-

tation is subdivided with respect to the steps introduced in

Section III-B. The steps necessary to provide the user-level

API will be described thereafter.

A. Tabletop: Processing Pipeline

We implement the tabletop use case using the VFH descrip-

tor and a Kinect controller. As stated in the introduction we



do not allow occlusion between objects on the table which

simplifies the segmentation task. Our processing pipeline is

best described graphically as it is done in Figure 3.

Fig. 3 – Tabletop object recognition processing pipeline.

B. Framework Implementation

We still need to solve the puzzle how a simple line like

”Training<Tabletop> training;” is able to spawn

a processing pipeline like the one shown in Figure 3. The

Training<MethodT> and Recognition<MethodT>

class templates we have seen in the examples of Section

III-A represent the two basic processes entailed in object

recognition. We also established that the method here repre-

sented by the MethodT template parameter is nothing more

than a configuration entity. In C++ types (or classes) are

used as template parameters. Pipeline configuration in our

framework is done at compile-time. The whole pipeline set-up

is determined by data types. Why this is necessary can be seen

when considering the flexibility we demand of our framework.

Looking at the different descriptors we know from Section

III-B2, we see that different data types are needed to represent

the respective data descriptions. Clearly the descriptor decision

does not only impact the computation but also the type of

data stored in our models and database. Another reason for

type based configuration is the fact that some sensors provide

more than just 3-D data: They can also assign colors to the

points or do some preprocessing on their own like estimating

normals. Different data types are needed to use this additional

information inside our framework.

1) Compile-Time Configuration: C++ allows the definition

of nested types. That means that inside a class the developer

is able to define another class or redefine an existing type

with another name using the typedef statement. This is

especially interesting when defining template classes. Using

the typedef statement they are able to publish their param-

eter’s types with predefined names. In the case of training

we defined that the ”value” of MethodT can be accessed

with Training<MethodT>::MethodType. Defining the

name MethodType to access the template parameter is like

defining an interface.

The second property of the C++ language we use is template

specialization. For different template parameters a function

or class be completely reimplemented to exhibit a different

behavior.

With these possibilities in mind we define that the

MethodT parameter is no actual type that will ever be

instantiated by the C++ compiler. It is rather an aggregation

of several types that influence different parts of the behavior

of the training and recognition processes. This is achieved

by defining the interfaces that are used for data exchange

within training and recognition as templates as well. Due to

the dependencies that exist between the steps we defined in

Section III-B, the actual MethodT is holding types that serve

configuration purposes themselves. The current configuration

interface is best described considering Figure 4. This way we

Fig. 4 – Type based configuration.

can see that the grabber used determines the point type used by

the processes while the type of model chooses the descriptor

and meta data types.

2) Training and Recognition: For training and recogni-

tion our framework defines the class templates we already

know from the examples. They are the manifestation of the

generalized processes. Training and recognition use special

interface templates that we designed for each processing step.

These interfaces define how data is passed on between the

single steps in a way that does not depend on the data

type. We achieve this using containers which are templates

as well. The standard container for data exchange we use is

STL’s std::vector<T>. It can easily be serialized using

BOOST’s serialization library and it is quickly converted to

PCL’s pcl::PointCloud<PointT> container. In future

we also want the container type to be configurable in order to

minimize conversion overhead.

3) Database: In addition to training and recognition we

defined another class only visible to the user because of

the training file generated by training. The database is the

one entity that forms the connection between training and

recognition. The ModelDB class template is its representation

in our framework. It uses the DBCoreType parameter to



choose its matching method. Compatibility between a training

file and the current recognition method is determined by the

ModelType parameter.

4) Tabletop Implementation: What remains to be done in

order to have our framework perform the processes described

in Figure 3 is to provide implementations for the interface

templates needed by training and recognition. This is the work

that is done at the developer level. We wrap the PCL’s Kinect

grabber to fulfil our framework’s GrabberBase interface.

The same has to be done for segmentation. Since for VFH

description and modeling are the same, we are able to use

only one wrapper. The training class template is taking care

of the repetition needed to form a model. After completion

we move on to the configuration level. Here we create a

new method by either explicitly instantiating the Method

template class with the types of our wrappers or by publishing

a typedef with the same definition. Choosing the typedef

way enables us to rename the unreadable template instantiation

to ”Tabletop”. This method can then be used to configure

Training<MethodT> and Recognition<MethodT>.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced the software framework BOR3D

which is capable of combining different object recognition

techniques. At the same time it increases the ease of use

for developers working on use cases in real-world scenarios.

The separation of user level, configuration level and developer

level implementation assigns a defined role to every type

of user. It relieves beginners of having to dig deep into

the underlying techniques although they only wish to use

a boilerplate solution. Implementation and configuration is

reserved for users whose primary focus is machine vision.

Looking deeper into the more specialized abstraction lev-

els, there is also a lot of potential for future use. Like in

MOPED, the choice between a multitude of algorithms for

many different purposes enables the user-level developer to

focus on setting parameters for the techniques he wishes to

use, not having to worry about their implementation instead.

The flexibility of our framework as well as its abstraction

capabilities conceal developer-level and even configuration-

level implementation issues from the user’s eyes. However,

these algorithms need to be integrated first, either in the

shape of complete libraries or standalone. Eventually, this

framework’s power will increase crucially with the amount

of methods and algorithms included.

We believe that the basic ideas of our framework do not

only apply to 3-D object recognition but also to further signal

processing disciplines in which active research is conducted.

Being seen as a 2-D sister project of the PCL, OpenCV [10]

incorporates tools and algorithms pursuing an objective similar

to the PCL’s. Thus, an important step towards the inclusion

of object recognition using 2-D images is the integration

of OpenCV into our proposed framework which increases

its current capabilities many times over. Additionally, one

can also think of using mutually complementing libraries or

even switching between some of them which provide similar

functionality, like the matrix tools in OpenCV, Armadillo [11]

and Eigen [12].

BOR3D’s flexibility is tightly connected to the amount and

variety of use cases included. A very demonstrative example

whose integration we plan to tackle in the near future is

a highly cluttered scene with a lot of objects being placed

in a shelf like in the Cluster Recognition and 6DOF Pose

Estimation using VFH descriptors tutorial included in the PCL

[13]. The tabletop scenario described herein only serves as a

starting point.

The framework will be used in term projects of undergrad-

uate and graduate students at Ravensburg-Weingarten Uni-

versity of Applied Sciences starting in March 2012. We are

currently working on a questionnaire for the users to evaluate

BOR3D regarding our requirements.

BOR3D is available on SourceForge (http://sourceforge.net/

projects/bor3d).

ACKNOWLEDGMENTS

The authors would like to thank the members of the Institute

of Artificial Intelligence for fertile discussions. This work

was conducted within the Collaborative Center for Applied

Research on Service Robotics (ZAFH Servicerobotik) and sup-

ported by research grants of the state of Baden-Württemberg

and the European Union.

REFERENCES

[1] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[2] A. Collet, M. Martinez, and S. S. Srinivasa, “The MOPED framework:
Object Recognition and Pose Estimation for Manipulation,” The Inter-

national Journal of Robotics Research, 2011.
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –

Elements of Reusable Object-Oriented Software, 1st ed. Amsterdam:
Addison-Wesley Longman, 1995.

[4] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning Point
Cloud Views using Persistent Feature Histograms,” in Proceedings of
the 21st IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Nice, France, September 22-26, 2008.
[5] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D Recognition

and Pose Using the Viewpoint Feature Histogram,” in Proceedings of
the 23rd IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Taipei, Taiwan, 2010.
[6] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 239–256, February
1992.

[7] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in The IEEE International Conference on
Robotics and Automation (ICRA), Kobe, Japan, 05/2009 2009. [Online].
Available: http://files.rbrusu.com/publications/Rusu09ICRA.pdf

[8] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms
for local surface description,” in Proceedings of the 11th European
conference on computer vision conference on Computer vision: Part III,
ser. ECCV’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 356–369.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1927006.1927035

[9] A. E. Johnson, “Spin-images: A representation for 3-d surface match-
ing,” Tech. Rep., 1997.

[10] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[11] C. Sanderson, “Armadillo library,” http://arma.sourceforge.net, 2011.
[12] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,

2010.
[13] R. B. Rusu, “Point Cloud Library: Cluster Recognition and

6DOF Pose Estimation using VFH descriptors,” http://pointclouds.org/
documentation/tutorials/vfh recognition.php, 2011.


