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Abstract— In the near future service robots may fulfill

demanding tasks in unstructured and complex human-like

environments. A central challenge is to prevent such auton-

omous systems from provoking hazards by interaction with

their environment, especially when it is partially unknown.

Real-time risk information is seen as essential basis for safe

decision making processes. Therefore, generalized and conser-

vative safety principles are used to determine the interaction

risks. The solution for formalizing safety principles and for

quantifying necessary risk values is shown.

I. INTRODUCTION

A. The Field of Service Robots

The International Federation of Robotics (IFR) [1] has

defined a Service Robot as ’a robot which operates semi

or fully autonomously to perform services useful to the well-

being of humans and equipment, excluding manufacturing

operations.’ It is assumed that a service robot is intended to

move freely in a dynamic environment and to interact with

objects and humans over a longer period of time in order

to solve given tasks. Hence, the so-called mobile service

robots (MSR) are additionally expected to provide services

in various domains of life. Herein, the main challenge

for the robot is the execution of complex tasks within

an unstructured dynamic environment while collaborating

with human users in a natural and intuitive way. Classical

examples are, for example, a robot butler [15], able to grasp

recognized objects and open doors, a library robot [10], able

to fetch ordered books or the ’RoboCup@Home’ competition

in which interaction tasks are integrated. Similarly, a service

robot is addressed in this contribution which performs tasks

in a domestic environment, for example in a usual flat. Such

tasks could be fetching a cup of coffee, watering plants or

fetch the user’s medicine at the correct time, for instance.

B. Behavior-based Safety Concerns

During performing of tasks, several hazards can occur

depending on kind and size of the robot. In the field of

robotic, formerly strongly motivated by industrial appli-

cations, dangerous physical energies were mainly focused

when taking safety concerns into account. Therefore, one

of the main goals was to avoid collisions with humans,
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for example by separating stationary robots from humans

by a safety cage. In the field of service robots, robot’s

mobility is a central aspect in order to share the typical

human living space. Furthermore, touching humans might

be even necessary. The physical energies remain as a safety

critical aspect, whereupon that strongly depends on weight

and power of the robot. Failures and defects of components

may lead to uncontrolled release of the inherent energy;

hence these are often focused with respect to safety aspects.

Not so in this contribution, hence, a typical service robot

without need for huge physical force or speed is assumed.

Even so, the service robot cannot be regarded as safe even

if there is no chance to directly injure a human. Depending

on the task, the robot manipulates objects and therefore may

produce dangers which are connected to attributes of these

objects. For example, a manipulator with harmless physical

power may become dangerous when it has gripped a knife.

Therefore, the manipulated object also has to be taken into

account with regard to overall system’s safety investigations.

In the case that a service robot uses potential dangerous

objects like a knife, for example, the moving speed and force

have to be reduced in dependence of distance to humans.

Accordingly, the safety assessment process for service robots

is extended to objects which are intended to be manipulated

in tasks later on.

Assuming the robot now is aware of objects or tools it uses

and thus, it adapts its coordination and behavior in order to

avoid dangers. Nevertheless, there remains a further class

of dangers: The service robot manipulates objects that are

not dangerous directly, but the interaction of manipulated

objects with environmental objects can cause hazards, for

example, when the service robot fulfills the task ’bring dishes

to the kitchen sink’. Any perception module detects the

kitchen stove as suitable surface to place the dishes. Hence,

it deposits the dishes which could be made of wooden and

plastic, on the kitchen stove which in turn is still hot. The

interaction between dishes and stove may now provoke a

further kind of dangers that has to be taken into account.

Finally, for safety concerns of service robots it is important

that

• the direct affecting of the environment alias physical

energies,

• the indirect affecting of the environment by manipulated

or carried objects or used objects (alias tools), and

• the indirect provoking of dangers by interaction of



manipulated objects with surrounding objects is taken

into account.

The so-called robot’s awareness of its environment [9] can

also be connected to safety aspects [16]. A disadvantage of

the awareness is that it relies on the system’s perception. The

correctness and completeness of the environmental percep-

tion is a central aspect when intended to create situational

awareness. Hence, the perception of the environment is based

on probabilistic assumptions including uncertainties.

C. Need for Cognitive Technical Systems (CTS)

Amongst other aspects, the objectives of the AI commu-

nity are to enable service robots, robots or other systems to

learn skills or tasks by environmental or human feedback

or by demonstration. Therefore, different systemic functions

like perception, vision or learning are needed in order to

realize higher functionality by a well-coordinated interplay of

these components. The components and their interplay have

to deal with a huge variety of information with respect to the

environment (typical human/domestic environment assumed)

and depending on used sensors. As long as processing

power of the controlling computers is not able to process

the full variety of information (if this is ever possible),

only a selection of information can be processed. These

are the so-called ’relevant aspects’ of the full range of

information. As cognitive systems are basically characterized

by the capability to represent system-relevant aspects of the

environment internally [5] (in order to process them), it is

obvious that robotic systems which are intended to operate

in human like (complex) environments are cognitive oriented

systems somehow. Therefore, it is intended to investigate the

safety aspects of CTS in this contribution.

There are several approaches and architecture for CTS.

The chosen architecture design approach, the ’Situation

Operator Modeling’ (SOM) approach, is though as meta

model [12] on the one hand and on the other hand it

is successfully applied to robotics [2],[14]. Furthermore,

learning capabilities are investigated [5],[6] and aspects to

reduce complexity are developed [4].

D. Intrinsic Safety Knowledge

Risk can be understand as ratio of hazard and safeguards,

and ’”safeguards” is the idea of simple awareness. That is,

awareness of risk reduces risk. Thus, if we know there is a

hole in the road around the corner, it poses less risk to us

than if we zip around not knowing about it’[8].

It is assumed that awareness of hazards is generated with

the help of knowledge about hazards. The question is how

to transfer such knowledge to an autonomous system. It may

be answered by a computer scientist in introducing learning

algorithms. With introducing safety-critical systems with

learning capabilities, a ’chicken-and-egg’ dilemma arises. If

a system is assumed as ’tabula rasa’ at beginning of its

operating time, the system is not able to avoid dangerous

situations intrinsically in order to keep in a safe state. It

may learn after more or less trials to avoid such dangerous

states only by taking dangerous actions. Finally, it will

’converge’ to take safer actions in the average by learning

more or less abstract concepts of safety. But even if a system

would have learned an adequate safety concept there is no

comprehensible insight into the system in order to check

how the concept looks like or how it is realized. According

to standards and directives [IEC61507, DO-178B], at least

documented safety assuring procedure is required. Therefore,

a ’black-box’ learning approach would be not acceptable.

On the other hand, safety assuring procedures during de-

velopment phase of a system requires the complete definition

of occurring hazards in form of a hazard analysis. Typically,

the environment of a service robot, which could or should

possibly be delivered to any arbitrary household, is complex

and not completely known; these are two challenges that have

to be taken into account when assuring safety for mobile

service robots.

The complexity problem can be possibly circumvented

when a safety assuring module is assumed which basically

enables the refinement of the knowledge about dangerous sit-

uations, in the sense of above-mentioned learning approach.

The resulting process could be seen as one that is converging

to safety.

As long as a ’tabula rasa’ solution is not satisfying,

some initial definitions of dangerous situations (alias safety

knowledge) have to be included a-priori. This initial safety

knowledge has at least three additional functions (in addition

to traditional safety assuring procedure):

• to guarantee a certain safety during early operation

phases by being realized in a general and conservative

manner,

• to develop and introduce certain measures to describe

hazards and risks, and

• to construct and maintain a comprehensible symbolic

representation of the safety knowledge to enable doc-

umentation, debugging, verification and transferring to

other systems.

II. FORMALIZATION OF SAFETY KNOWLEDGE

Basically, the presented real-time safety assurance method

requires a system that is capable to perceive its environment

in order to generate an internal representation, store and man-

age experiences of environmental interactions in a knowledge

representation. The SOM-approach is used for this purpose

and therefore, it is detailed in the sequel.

A. Knowledge Representation in SOM

The Situation-Operator-Modeling (SOM) approach de-

scribes the real world using the introduced termini ’situa-

tions’ and ’operators’, modeling scenes and actions of the

real world. The situations are time-fixed and event discrete

descriptions of ’moments’ of real world. Changes in the

considered systems are denoted with so-called operators.

A changing world results in situation operator chains. The

situation itself consists of characteristics ci and relations ri.
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Fig. 1. Graphical representation of a situation operator sequence denoting

the modeling of changes within the real world [5].

The relations represent an inner structure of the situation,

which allows the linking of characteristics to each other

through arbitrary functions [5]. The relations are from the

same quality as the operators. Whereby the operators transfer

situations to sequel situations and relations are used to ab-

stract further characteristics. Characteristics can basically be

measured physical values or higher abstracted information.

The SOM approach comes with a graphical representation

(see Fig. 1). The situation is denoted with gray ellipses, the

black dots represent the characteristics. The white circles are

relations when located in the gray ellipse of a situation or

operators when connecting situations.

In simplified terms, the SOM technique can be used to

construct a cognitive architecture that is capable to de-

scribe the perception, abstraction, storage of experiences and

learning with a unique homogeneous SOM-based notation.

Furthermore, the whole information processing is based on

the same methodical background [5].

The stored experiences, in the so-called experience data-

base consists of sets of initial situation, operator and final

situation ’prototypes’. These can be used to generate a set

of future reachable situations, the so-called action space. The

action space can be uses for planning purposes [4].

A detailed description about the mentioned approach is

given in [12],[13].

B. Risk-sensitive Planning and Risk Perception

The SOM-approach is used as the overall concept, used

to create an architecture (see [5]) for an autonomous sys-

tem (service robot). It provides functions like perception,

learning, reduction of complexity, planning, etc. Additional

components have to be embedded in the architecture, which

are responsible to assure the safety of the overall system. The

focus of the addressed safety concerns are hazards caused by

manipulating objects as described in I-B.

Hence, two functions seem to be central in this context.

The first important function is the planning capability. The

planning component defines actions that are performed in

order to reach a given goal. With the help of prediction

capabilities of a CTS, actions with low or no risk are

preferred in order to keep the system in a safe state. The

perception is seen as a second important component because

the perception is connected to the information selection (for

example with respect to current goal or sub goals). Is has to

be assured that present risks are perceived.

An advantage of the SOM-based architecture is the use

of homogeneous notations for all cognitive functions. If

the risk information extraction process is realized in SOM

manner it can be used to assess risks for planning as well

as for perception. The ’relation’ is the notation to describe

internal structures (abstraction) of situations. Hence, the

notion ’relation’ can be used to integrate risk assessment in

the cognitive architecture.

C. Relations

In this presentation risks are focused, that can arise

through interaction of environmental objects. Risks to be

distinguished are assumed to be situational inherent and

therefore, detectable by analyzing the inner structure of a sit-

uation. Relations are used in the SOM-technique to describe

inner structures of situations. Hence, the core idea of this

approach is to use a-priori ’artificially’ generated relations

in order to derive risk information. This method ensures

that safety knowledge is consistent to the overall CTS. This

basically enables the integration of the safety knowledge

into the experience database. That in turn generally enables

the refinement of the safety knowledge by the cognitive

system itself what is essential because the initial safety

knowledge can be hardly described completely during the

development phase of the robotic system. The refinement of

safety knowledge is not addressed in this contribution, but it

should be structurally taken into account.

The ’relation’ in SOM notation has the same structure as

an ’operator’ and is also called ’passive operator’ (internal

causal relation between characteristics: in terms of ’because’

[13]). A relation is applicable to a situation if its so-called

explicit assumptions eAx are fulfilled. A certain relation

requires the presents of certain characteristics. The required

characteristic can be seen as a condition for its application

and as inputs of the relation function. On the basis of the

inputs (and parameters as implicit assumptions iAx) the rela-

tion generates new (abstracted) characteristics c, for example

like a mathematical function, c = f(eA1 . . .eAi, iA1 . . . iAj), so

the notion can be used to formalize the safety knowledge.

Hence, the a-priori risk analysis results by risk computational

rules or principles. These rules or principles in turn are

formalized in relation notion. The set of produced risk

assessment relations is called safety knowledge.

In a first step the formalization of hazard causes (if-then

constructs) are realized with the help of the conditional

applicability of relations. For example, the appearance of

characteristic ’A’ and ’B’ indicates risk ’C’ then the relation

generating characteristic ’C’ awaits the presence of charac-

teristic ’A’ and ’B’. A further problem is to express the risk



in comparable measures. Therefore, the risk quantification

problem is discussed in the sequel.

III. QUANTIFICATION

The objective of integrating risk assessment capabilities

in robotic systems is to realize safe autonomy. This requires

deliberative decision-making capabilities at least at a higher

systemic level.

’Rational decision-making requires, therefore, a clear and

quantitative way of expressing risk so that it can be properly

weighed, along with all other costs and benefits, in the

decision process’[8].

The term ’properly weighed’ in relation to risks, costs and

benefits requires for comparable measures. A set of decision

alternatives, equipped with such comparable parameters can

be dealt with the help of decision theory. To reach compara-

bility it is assumed that a standardization to absolute values

in the range of

0 ≤ risks,costs,bene f its,severity, probability, . . . ≤ 1

is appropriate.

A. Quantification of Risks

Within the universal definition of risk the three questions

’what can happen’, ’how likely is that’ and ’what are the

consequences’ [8] are adopted for presented robotic risk

assessment approach. Each answer results to a triplet <

Si, pi(φi), pi(Xi) >, which describes the likelihood pi(φi) and

the consequence pi(Xi) of the scenario Si [8]. Precise num-

bers for consequences and likelihoods are very are difficult

to derive, thus, in [7],[8] is introduced the ’Evidence-based

Approach’, which is shortly described in the sequel.

B. Modeling of Consequences and Likelihoods

A key problem of describing risks numerically is that these

most often cannot be determined with absolute precision be-

cause it is a subjective thing and relative to the observer [8].

Therefore, it is suggested to express such ’vague’ issues with

probability distributions. These are generated with the help

of the ’Evidence-based Approach’ [7]. Hence, the probability

density of the numerical expression changes in accordance

to the amount of considered evidence. The more evidence is

available the more precise numerical expression can be pro-

cessed with the help of Bayes’ theorem. Hence, with [8],[7]

an approach is given that enables the quantification of risks

methodically. The overall process is shown in Fig. 2 which

is strongly oriented on the graph in [7]. Initially, example

scenarios are defined; causal conditions are extracted and

supplemented with quantified consequences and likelihoods.

This information is packaged in the ’safety principles’ in

an adequate structure as mentioned in II-C. This set of

’safety principles’ (safety knowledge) is the starting point

of the system’s operation time. The current interpretation

of the internal representation of the outside world in form

of situations (see II-A) is presented to the risk assessment

module. This module in turn evaluates situation on the basis
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Fig. 2. Variation of the risk quantification process for the on-line risk

assessment in the style of [7]

of the safety principles, respectively. The outcome of the risk

assessment module is the derived risk information. That in

turn is an important base for decision-making.

IV. EXPERIMENT

A. Thought Experiments

In the sequel are depicted three thought experiments (TE)

in order to state risks that could possibly occur with respect

to interaction of objects in the domain of service robots more

precisely. Basically, causal and temporal relations of the

described examples can be decoded very precisely, but the

following experiments are kept simple with the intent to show

a conceptual solution on the one hand and on the other hand

to realize generalized rules (or due to this reason so-called

principles). The ’conservative concept’ of these principles

is to over-generalize and simplify hazard causes with the

objective to accept false alarms (false risk detections) in

principle and to avoid missed alarms.

An object recognition system is assumed to be available

as an under-laying system unit. It is assumed that the object

recognition is powerful enough to recognize all objects

in accurate time and no information filtering takes place.

Furthermore, the output of the object recognition module

is assumed be to a list. The list contains recognized objects

and their position or even size and pose. For each recognized

object there exists a sub-list which contains possible object

identifiers and the identification probability, respectively. The

object identifiers are assumed to be known natural language

descriptions. The summed up probability Pi of each object’s

identification probability Pi j is assumed to be Pi = ∑Pi j ≤ 1.

The remaining difference Puncertainty,i = 1−Pi is assumed to

decode uncertainty.



1) TE1: Kitchen Stove: A service robot is instructed to

bring the dished to the kitchen sink. In order to deposit the

dished close to the sink, any module recognizes the modern

ceramic stove top as preferable surface. If a cooking plate

is still hot and there is some plastic bowl or other plastic

dishes, the risk of toxic vapor or fire by inflamed plastic

arises. In this case, the robot’s acting provokes unacceptable

risks and therefore it is not safe anymore [3]. To avoid such

situations (in order to make the robot functional safe), a rule

(principle) has to be implemented which states that a plastic

bowl (plastic (or wooden. . .) object) is not allowed to be

placed on top of (close to) a stove (heat source). There are

several possibilities, for example the position of the cooking

plate knobs, the measured plate temperature or even the

daytime can be taken into account. These possibilities are

not wrong, but nevertheless difficult to be realized robustly.

The assumption, the cooking plate is potentially hot is much

more easy, not fully correct, but safe.

The involved factors on which the situational risk depends

are described as follows: The object recognition module

recognizes the ’cooking plate’ with a probability PCP and

as mentioned above, the cooking plate is assumed to be

hot, so PCP = PHeatSouce. The ’bowl’ is recognized with

the probability Pbowl and it is assumed that all bowls are

made of plastic, so PBowl = PPlasticOb ject . The worst case

accident of such situations is assumed to be a residential

fire with the consequence of human injuries. The severity

value is taken from the ’Hicks Scale’ (see e.g. [11]), for

example ’0.15’ (’Minor to major injuries, medical aid and

low severity impairment’). The severity value is assumed

to range between ’0 . . .1’ - therefore, the values of the

’Hicks Scale’ (’0 . . .100’) are normalized. Besides the pure

availability of a plastic object and a heat source in a situation,

further dependencies for determining an accidental risk are

important. For example, the distance between both objects

plays a central role. Therefore, it is assumed that there is a

dependence between the spatial distance and the probability

of a heat accident in terms of Pdistance = fP(distance).
This function can be approximated, for example, by linear

interpolation of some known (extreme) values.

The description of the risk, in accordance to the triplet

in [8] is < Si, pi(φi), pi(Xi) > in which pi(φi) describes

the likelihood and pi(Xi) the consequence of the scenario

Si. In this example this is < Sheat+plastic,P = PHeatSouce ·

PPlasticOb ject ·P(distance),0.15 >.

The remaining probability difference, which takes uniden-

tified objects into account, is treated separately. With re-

gard to safety aspects, it is reasonable to assume them

as dangerous objects with a very high accident severity,

for example resulting in the following risk triplet notation

< Sunknown,Punknown = 1− (PHeatSouce ·PPlasticOb ject),1 >.

2) TE2: Watering the Power Plug: The second experi-

mental scenario is derived from a task ’watering the plants’.

Here, it is assumed that a power plug fell into a plant pot.

If the robot is watering the plant, the risk of electrical shock

arises, both, for human and robot. These risk factors can

be regarded as follows: The object recognition recognized

the power plug with a probability of PPlug and knows

with the probability of PWater that there is water in the

watering can. Finally, it is not really true, but safe, if the

approaching of the robot with water (’liquid container’)

to a power plug (’dangerous electric device’) would be

forbidden by a corresponding rule (principle). The modeling

of the accident severity could take place by consideration

of electrical accident statistics or again by using the ’Hicks

Scale’ (Severity ’0.6’ according to ’Single fatality, permanent

total disability’). The observing of the water jet striking the

power plug is difficult to realize. Therefore, it would be

a conservative approximation to avoid the approaching of

water to dangerous electricity in principle. The risk triplet is

< Swater+electr.,P = PPlug ·Pwater ·P(Distance),1 >.

3) TE3: Gripping a Gun: The third experiment deals with

a situation in which the robot is instructed to grip a gun. In

the case of usual domestic service robots, the estimation of

mentioned risk is very simple: The possible accident outcome

is assumed to be at least the death of one human. Therefore,

the severity is assumed to be 1’ according to ’Hicks Scale’

(’Multiple fatalities and injuries’). The probability of such

accident can be taken from the statistic about average death

rate caused by guns, for example PGun = 0.0011 or it can be

set to PGun = 1 with the intent to emphasize the uselessness

of guns. Therefore, the single gripping results in a risk triple

< SgrippedGun,1,1 >.

4) Conclusions: The quantification of accident probabili-

ties and severities remains difficult. A conservative selection

of parameters in problematic cases may cause standstill

of the robot. Under assumption that a service robot in a

domestic environment is not entrusted with tasks, whose

failing are critical, it is acceptable that the robot’s control

refuses performing of tasks when insufficient knowledge

(about objects) is available. Thus, a required refinement or

extension of the safety knowledge could possibly take place

under human supervision.

B. Experimental Simulation

For the proof of presented concept a small simulation

environment was created. The simulator generates an envi-

ronment in order to investigate the results of the described

risk assessment module. Therefore, a scene in form of 2D-

wold is made available, containing a robot and several

environmental objects. The robot can be moved, the robot

is able to grip objects. The scene can be changed by moving

the robot with a gripped object. The object recognition

module is ’simulated’ by manually assigning several iden-

tities with different probabilities to the objects, respectively.

This object recognition module response can be manually

changed by the user. Furthermore, the object recognition

1Average death rate concerning accident with guns in Germany, see

http://www.fhvr-berlin.de/fhvr/fileadmin/content/

publikation/heft48.pdf, May 2010.



TABLE I

LIST OF OBJECTS IN THE OBJECT DATABASE. EACH OBJECT HAS

SEVERAL ATTRIBUTES.

Identifier Attributes

OBJ_Human A:human A:moving

OBJ_PlasticBowl A:graspable A:plastic A:liquid container

OBJ_CoffeeCup A:graspable A:liquid container A:hot liquid

OBJ_PowerPlug A:graspable A:electric A:plastic

OBJ_Stove A:heat

OBJ_Gun A:graspable A:lethal

OBJ_WateringCanP A:graspable A:plastic A:liquid container

OBJ_WateringCanM A:graspable A:metal A:liquid container

OBJ_Oma A:human

OBJ_PetrolCan A:graspable A:flammable liquid A:plastic

OBJ_UN A:lethal

uses natural language identifiers for the recognized objects.

Further information from the object recognition, like position

or size of objects and information about the internal state of

the robot, for example position and speed, are summarized

in a time-fixed and event discrete situational description.

Hence, the current situation is examined with respect to

risks. Furthermore, the objects are classified with respect to

attributes in an object database. The object ’watering can’ can

have associated attributes like ’liquid container’, ’plastic’ or

’metal’. For simplification, all attributes are connected with

respective objects with probability ’1’.

The third required input of the risk assessment module

is the set of safety principles. The principles are divided

into three parts. The first is the conditional part (explicit

assumption eAx, see II-C). With this conditional part is

defined when the respective principle is applicable. For this

example that is the case when respective objects are present

in the current situation. In order to simplify the conditional

part, it is limited to two objects - one environmental and one

gripped object. Generally, more complex logical connections

are possible. The condition can be formulated either with

object names or with object attributes. The second part of

the principle is the severity estimation instruction. In this in-

struction the severity value is defined. Therefore, the severity

can be either computed with the help of additional situational

information (relation) or it can be parameterized with values.

In this experiment only fixed parameters are used. The third

part of the principle is the determination instruction for the

probability of accident occurrence. The concept is similar

to the severity determination: the probability can be either

a static parameter or it can be derived from the situational

context.

C. Experiment and Results

The experiment was made in the mentioned simulation

environment with a selection of objects. A set of attributes

may be connected to each object (see Table I). The objects

are placed in the 2D world (see Fig. 3), the robot can be

moved and one object can be moved with the help of the

robot by gripping it. While the user changes the scene, the

risk assessment determines the current risk. The output of

Fig. 3. The 2D world, including typical objects and the robot.

the risk assessment module is a risk matrix. In accordance to

[8] it consists of a list of risk triplets. Each triplet represents

a hazardous scenario. In order to generate a risk curve as

an adequate description of risk, the scenarios are ordered

starting with the scenario with the highest severity. The

probability values are summed up [8].

The implemented safety principles are shown in Table II.

In the first experiment the robot was moved near the stove.

According to principle ’7’, there is a risk in dependence

of the robot’s distance (’@’ represents the robot) to the

object (stove) with the attribute ’heat’. The resulting risk

curve is shown in diagram a) in Fig. 4. A risk with the

severity of 0.02 is present as parameterized in the receptive

principle. Furthermore, it has the probability of occurrence

0.35 in accordance to the linear function that specified in the

principle.

If the robot remains at the same position, but has gripped

the bowl with the attribute ’plastic’ then principle ’2’ gener-

ates a additional risk contribution to the graph; the peak at

severity of 0.15 shown in diagram b) in Fig. 4.

The diagram c) shows the risk curve when the robot has

gripped the red watering can. The risk curve contains addi-

tional risks because the object recognition identification of

the red watering can is ’WateringCanM’ with P1 = 90% and

therefore the attributes ’metal’, ’liquid container’ (according

to table I). Furthermore, the identified object could be ’Wa-

teringCanP’ with P2 = 7% with the attributes ’plastic’, ’liquid

container’ or it could be a ’PetrolCan’ with probability P3 =
2% and the attributes ’flammable liquid’, ’plastic’, ’liquid

container’. Finally, the remaining probability of P4 = 1% is

uncertainty and therefore treated as unknown object with the

attribute ’lethal’. The risk contribution of the unknown object

is the risk probability with severity ’1’ coming from principle

’15’. The principle ’11’ is responsible for the risk contri-

bution at point ’0.7’ of the severity axis in the case when

’flammable liquids’ are approached to ’heat sources’. The

remaining risks result from the above-mentioned principles

(robot or a ’plastic object’ is approached to a ’heat source’).

In diagram e) in Fig. 4 the robot is shown again at

the same position with the blue watering can. The object



recognition delivers the output ’WateringCanP’, P1 = 90%

or ’WateringCanM’, P2 = 7% or ’PetrolCan’, P3 = 2% and

again ’unknown’ with P4 = 1%. The safety principles that are

active are the same as in the latter experiment. The safety

principle ’2’ for attribute ’plastic’ and ’heat’ generates a high

risk contribution, similar to diagram b).

The last diagram f) shows the risk curve when the robot

grips a gun in presence of a human and in accordance to

principle ’16’. This principle is designed to inhibit the robot

to grip a gun in presence of a human and therefore, it

generates high severity and probability values.

D. Discussion

The values for severity and probability of hazards and

the conditions are simplified. Nevertheless, such exemplary

values enable a risk assessment, which is plausible. The

proposed strategy especially for complex cases is to inhibit

dangerous situations in a very general manner. The refine-

ment and extension of the principles can take place in further

steps, for example by learning, by adding tasks skills, by

exchange of knowledge between robots or by debugging

the safety knowledge manually. The possibility for traceable

debugging seems to be very important, especially when

refinement of the safety knowledge by learning is allowed.

The comprehensible a-priori safety knowledge-base provides

a-priori safety. On the other hand, this knowledge is stored

in a dynamic manner, so that adoption due to learning

capabilities is not excluded. The natural language basis of

the a-priori safety knowledge assures that further knowledge

is maintained in a comprehensible way.

A further challenge which is related to complex safety-

critical systems is the certification process. The efforts that

have to spent in safety assuring mechanism depend on

required safety integrity levels (SIL). Proposed approach will

not be appropriate for highly safety-critical systems and of

course the traditional safety analysis cannot be replaced.

Nevertheless, due to the modularity , intensive testing and

evaluation of the risk assessment module software is possi-

ble. For generating and debugging of the safety knowledge-

base additional tools have to be developed. The verification

of the safety aspects possibly takes place by examining

or inspecting the current state of the safety knowledge-

base. The critical information processing paths (information

source, sensors) can be derived from the safety knowledge

by checking the principle’s input, for example.

A safety guarantee in form of a formal proof should be

hardly possible due to the high complexity. Finally, this

safety assuring approach is based on a (well documented)

carefully developed mechatronic system. It is assumed that

debug-able and maintainable safety knowledge which causes

safety limitations in additional safety assuring modules (ac-

tive safety measures) plays a key role on the way to safe

service robots.

V. CONCLUSION

In this contribution an approach for realization of safe

autonomous robot interaction is presented. The central

idea is to embed dynamic risk assessment into a cognitive

technical system (CTS) in order to assess the CTS’s internal

representation of the real world. It is shown how a-priori

safety knowledge can be integrated dynamically, permitting

modifications in principle in order to refine and extend

it. The formalization of safety knowledge with the help

of the Situation-Operator-Modeling (SOM) approach is

pointed out. A simulation experiment shows the output of a

risk assessment module, which can be directly used for a

subsequent decision making processes.
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[2] E. Ahle and D. Söffker, “A Cognitive-Oriented architecture to realize

autonomous behavior - part II: application to mobile robotics,” in

Systems, Man and Cybernetics, 2006. SMC ’06. IEEE International

Conference on, vol. 3, Oct. 2006, pp. 2221–2227.
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human errors based on multiple partial state spaces,” in 6th Vienna

Conference on Mathematical Modeling on Dynamical Systems MATH-

MOD, Vienna, Austrialia, 2009.
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TABLE II

LIST OF APPLIED SAFETY PRINCIPLES, CONSISTING OF THREE PARTS, THE CONDITIONAL, SEVERITY ESTIMATE AND PROBABILITY ESTIMATE PART,

SEVERITY PART AND PROBABILITY PART CAN BE DEFINED IN DEPENDENCE OF ANY INPUT CHANNEL WITH THE HELP OF INCLUDED

PARAMETRIZABLE STANDARD FUNCTIONS.

Nr
Object 1

(Robot/carried)

Object 2

(in environment)
Principle Input

Sev. 1

(0…1)

@Val1

of Inp.
Principle Input

Prob. 1

(0…1)

@Val1

of Inp.

Prob. 2

(0…1)

@Val2

of Inp.

1 A:hot liquid A:human NONE NONE 0.1 LinearFunction distance 1 20 0 70
1 * NONE NONE LinearFunction speed 1 2 0 0.3
2 A:plastic A:heat NONE NONE 0.15 LinearFunction distance 1 10 0 50
3 A:chemical A:human NONE NONE 0.6 StepMFunction distance 1 30
4 @ A:human NONE NONE 0.02 LinearFunction distance 1 0 0.1 70
4 * NONE NONE LinearFunction speed 1 2 0 0

5 A:liquid container A:electric NONE NONE 0.6 LinearFunction distance 1 0                 0 50

6 A:electric A:liquid container NONE NONE 0.6 LinearFunction distance 1 10 0 100
6 * NONE NONE LinearFunction speed 1 1 0 0.3
7 @ A:heat NONE NONE 0.02 LinearFunction distance 1 10 0 60
8 A:heat A:plastic NONE NONE 0.15 LinearFunction distance 1 10 0 30
9 A:electric A:human NONE NONE 0.6 LinearFunction distance 1 50 0 100
10 @ _ NONE NONE 0.01 LinearFunction distance 1 10 0 40
10 * NONE NONE LinearFunction speed 1 2 0 0
11 A:flammable liquid A:heat NONE NONE 0.7 LinearFunction distance 1 20 0 100
12 A:heat A:flammable liquid NONE NONE 0.7 LinearFunction distance 1 20 0 100
13 A:flammable liquid A:electric NONE NONE 0.7 LinearFunction distance 1 0 0 50
14 A:electric A:flammable liquid NONE NONE 0.7 LinearFunction distance 1 0 0 50
15 OBJ_UN _ NONE NONE 1 StepMFunction NONE 1 1
16 OBJ_Gun A:human NONE NONE 1 StepMFunction NONE 1 1

Conditional Part Probability PartSeverity Part

a) b) c)

d) e) f)

Fig. 4. Risk curve of several experiments. a) Robot close to heat source b) same position with a plastic bowl gripped c) with a coffee cup gripped d)

with a metal watering can e) with a plastic watering can f) with a gun in the gripper. The danger scenarios are plotted on the x-axis, ordered by respective

severity while the respective probabilities are accumulated on the y-axis.


