
Robust Multi-Algorithm Object Recognition
Using Machine Learning Methods

Tobias Fromm, Benjamin Staehle, and Wolfgang Ertel

Abstract— Robust object recognition is a crucial requirement
for many robotic applications. We propose a method towards
increasing reliability and flexibility of object recognition for
robotics. This is achieved by the fusion of diverse recognition
frameworks and algorithms on score level which use charac-
teristics like shape, texture and color of the objects. Machine
Learning allows for the automatic combination of the respective
recognition methods’ outputs instead of having to adapt their
hypothesis metrics to a common basis. We show the applicability
of our approach through several real-world experiments in a
service robotics environment. Great importance is attached to
robustness, especially in varying environments.

I. INTRODUCTION

In the field of robotics, object recognition and perception
in general are some of the most essential topics as they are
crucial for further research on high-level behavior planning.
Especially the area of service robotics is dependent on robust
methods to determine the type, position and orientation
of objects to interact with. There is a huge diversity of
approaches in image processing and object recognition, but
most of them are highly focused on certain types of objects
and therefore likely to fail on many real-world applications.
Examples of such failures are texture-based algorithms on
unicolored items or infrared light-based sensors on transpar-
ent ones. Recognizing a greater variety of objects differing
in shape, color, texture and material therefore demands a
combination of specialized sensors and algorithms and the
integration of their results.

Combining the results of varying recognition algorithms
is known to bear some risks and difficulties, though. There
are basically two possibilities to tackle these: Firstly, the
algorithms’ hypotheses can be unified in some way for direct
comparison. If done this way, there also needs to be some
assessment of the algorithms’ applicability on the concrete
problem. Secondly, result unification and applicability eval-
uation can be performed automatically by using Machine
Learning (ML) methods for handling both of these tasks.

The great advantage of the second approach is the adapt-
ability of virtually any algorithm to the recognition process.
If done this way, the user does not need to adapt the algo-
rithm’s output to any pre-defined scheme, only a ranking of
hypotheses needs to be produced. Each of these hypotheses
also needs to have some arbitrary score or distance measure
attached. Everything else will be done by the ML fusion
part which, in the end, will present a final ranking of object
hypotheses combined from all algorithms’ results.

The authors are with the Institute of Artificial Intelligence, Ravensburg-
Weingarten University of Applied Sciences, 88250 Weingarten, Germany
lastname@hs-weingarten.de

Fig. 1 – Kate, the service robot providing the platform for
the application of the proposed method.

As special value is placed on the robustness and real-
world applicability of our approach, the process in this paper
was implemented on our real service robot Kate (Figure
1) which is equipped with a Kinect RGB-D sensor. This
enables us to execute several algorithms based on texture,
color and point clouds in parallel for recognizing a variety of
objects in a typical household environment. We emphasize
the diversity of the used objects in the mentioned criteria,
but at the same time, pay attention to include objects with
similar characteristics as well (see the examples in Figure
2). This way, we are able to conduct a more consistent
evaluation of our approach in terms of robustness since rather
similar objects cause a bigger challenge for the recognition
and fusion algorithms than obviously distinctive ones.



(a) distinct mainly by shape

(b) distinct mainly by texture (c) distinct mainly by color

Fig. 2 – Objects exploiting the advantages of different
recognition approaches.

Because of the necessity of evaluating our approach in
a real-world domain, it is hard to quantitatively compare
its results to any related work as their methodology and
range of applications, respectively, does not entirely match
with ours. Still, the methodical validity of the basics used
in the proposed method was shown in the works we refer to
in Section II. After we present the utilized existing object
recognition approaches in Section III, in Section IV we
describe in detail how our recognition score fusion technique
works. Following the evaluation of our approach in Section V
we will conclude the paper with future prospects in Section
VI.

II. RELATED WORK

In our approach, we benefit from the work of Scheirer et
al. [1] who introduce the term Meta-Recognition (MR) as a
performance prediction method for recognition algorithms.
They first describe the theory and prove the plausibility
of their concept from a statistical point of view using
Extreme Value Theory (EVT). In their recent work [2], MR is
extended through the usage of ML to allow for more accurate
predictions. The authors show that statistical approaches can
be outperformed by far because ML classifiers can make
use of a-priori knowledge of a bunch of training examples
in contrary to statistical classifiers.

In general, MR is an enhancement of conventional sensor
fusion methods like the ones which use the Dempster-Shafer
theory, a generalization of the Bayes theory [3]. Successful
applications for this theory exist [4], but they rely on the
validity of probabilities for object existence.

Other works like [5] concentrate on building filters for
the fusion of low-level sensor data of same characteristics
which is perceived by different sensors. The weight of these
filters is usually adjusted object-independently, so any object-
dependent advantages of certain recognition algorithms over
others cannot be taken account of.

Gould et al. [6] use machine learning to build object-
specific classifiers. Their results sound promising and show

the applicability of ML in an object recognition domain quite
well. However, they combine raw data and computed features
from different sensors, but not high-level recognition score
outputs. This method is extended by our approach where the
user is relieved from the need of dealing with raw data.

In the work of [7], distances of histograms over the
texture, shape and color features detected by some algorithms
are used which are then fed into a k-Nearest-Neighbor
classifier to identify the object. Unfortunately, there is no
comprehensible description of the classification process or
the classifier settings which were used in this paper. But
still, the overall recognition results look convincing and fuel
our efforts towards using an ML approach for our work.

Summarized, all the approaches mentioned so far provide
convincing results in their respective domains, but, except
for [6] and [7], they are not primarily dealing with an object
recognition problem. Furthermore, the method we propose
herein provides for an easy-to-use combination of existing
recognition algorithms in terms of effort to adapt these into
the overall classification system. This stands in contrast to
the mentioned methods as none of them enables the user
to simply add a new recognition algorithm with very little
methodical and implementational effort.

When it comes to the collection of an object gallery used
for training and recognition, one can find many promising
approaches like the Berkeley 3-D Object Dataset (B3DO) [8]
or the one of the University of Washington [9], the latter of
which even incorporates tree-like hierarchies. Janoch et al.
[8] give an evaluation of some of the other available datasets.
In contrast to most of the others, the Berkeley dataset is made
of many different instances in a large number of categories.
They also emphasize that the data was collected “in the wild”
instead of a laboratory setting.

Other examples of standardized object dataset collections
are RoboEarth [10] and the KIT ObjectModels Web Database
[11] which provide interfaces to a database where any user
can input their self-created object models including various
kinds of data. This is a very promising approach as real-
life objects can be stored in this database with open access
and contribution for everyone working in this field. For our
work, at the moment there is still the need for high-resolution
images of the objects with highly textured backgrounds,
though. Unfortunately, this so far prevented us from using
one of the described datasets. The object gallery used in our
approach as well as its assumptions regarding the input data
are described in Section V and III, respectively.

III. OBJECT RECOGNITION ALGORITHMS AND PIPELINE

In the following, we will briefly describe the object
recognition pipeline as well as particular frameworks and
algorithms used in the context of our approach. For more
details please refer to the respective publications and web-
sites.

However, it is very important to emphasize that the fol-
lowing selection of algorithms is utilized to demonstrate the
applicability of our approach, but the approach itself is not
limited to the described algorithms. Instead, this selection can



easily be extended to contain virtually any object recognition
algorithm, not necessarily complying to the categories in this
section. We can think of various other algorithms based on
2D and 3D sensor data that may be included in the proposed
system.

A. Point Cloud-Based Matching

As affordable 3-D sensors, namely the Kinect and its
relatives, have started flooding the market, 3-D imaging has
become easy to use and affordable. The premier software
collection to use in this context is the Point Cloud Library
(PCL) [12] which represents an effort to address the most
prominent areas in the field of 3-D point cloud processing.
However, the PCL being defined as a library instead of a
framework, it incorporates a lot of state-of-the-art algorithms,
but without any limitations on how to use them. This makes
it lack reusability of high-level solutions. Due to this fact, in
the context of point-cloud based object recognition, we make
use of our recently developed framework BOR3D [13]. This
tool presents a novel approach of 3-D object recognition via
extending the PCL’s versatile capabilities by the union of
ease of use and flexibility.

B. Texture-Based Matching

The texture of an object holds valuable information and
is another property that can be used for object recognition.
In this work we utilize the MOPED framework [14] which
provides a SIFT-based approach for object recognition and
pose estimation. It uses a database of features arranged
in 3-D space which were extracted and registered (i.e.
transformed into the same coordinate system) from a set of
2-D images. MOPED attempts to classify any objects in the
images by comparing the interest points with its database
and calculating a score to estimate the distance of the input
to any similar database model.

C. Color-Based Matching

To distinguish between objects varying mainly by color
like in Figure 2(c), we use a color distribution histogram
over the object’s input image for which the Bhattacharyya
distance is computed to the histograms of the respective
object model. This histogram is built over Hue-Saturation-
Value (HSV) color space instead of Red-Green-Blue (RGB)
because of its superior accuracy on image classification tasks
by decoupling brightness from chromatic components [15].
Even more, due to our own assessment, we regard hue and
saturation only because the value component has proven to
be most susceptible to the change of lighting conditions.

D. Pre-Processing Pipeline

In order to aggregate these particular recognition algo-
rithms, the object candidates need to be detected first.
In our case, BOR3D provides helpful assistance regarding
segmentation and clustering of the 3-D point cloud. We use
the standard approach of first computing planes in the input
image via RANSAC [16], next removing them and then
generating clusters from everything else which are taken as

Fig. 3 – Visualization of the score fusion process.

possible objects. These candidates are then being equipped
with the RGB image cropped to the respective area so that
high-resolution information is retained. Finally, the 3-D point
clusters including RGB information are taken as input data
for the previously described recognition frameworks.

Summarized, our pre-processing pipeline complies with
the standard procedure utilized by many state-of-the-art
object recognition approaches:

1) Gather sensor RGB and depth data.
2) Remove planes from depth data using RANSAC.
3) Compute clusters from the remaining 3-D points.
4) Crop RGB image according to cluster size and coor-

dinates.

IV. MULTI-ALGORITHM RECOGNITION SCORE FUSION

A. Terms and Conditions

First of all, it is important to state that, whenever we use
the term object, this refers to the model which is stored in
the model database. The physical 2-D/3-D data on which
the recognition process runs on in the following will be
called candidate. After running the classifier, one or more
hypotheses are generated from this candidate which equal
the objects the classifier assigns to them together with a
confidence.

Instead of building a multi-class classifier which takes
training samples of all objects, we create a distinct binary
classifier for each object because, in case of erroneus training
data for a certain object (e.g. incorrectly set class labels), it
is easier to keep track of misclassifications if only one object
is affected. Distinct classifiers’ outputs can be monitored
separately with a higher probability to track down the error
source.

Another benefit from distinct classifiers is the possibility
to build a multi-level object classification system which is
able to group, for instance, several flavors of sodas or chips
on a lower level, beverages and food on a higher level. Since
this may provide an objective for future work, our current
approach attempts to lay some architectural foundations.



B. Score Fusion Process

The score fusion is started after the pre-processing pipeline
as described in Section III-D has finished. Basically the
workflow per candidate can be explained in four major steps:

1) Run all recognition algorithms separately. For the
results presented in this paper, these are the previously
described BOR3D, MOPED, and Color Histograms.

2) Compute features from recognition algorithm scores.
These features will be explained in detail in the next
section.

3) Perform classification for each object. The used clas-
sifiers and settings are illustrated in Section IV-F.

4) Select the hypothesis which returns the highest con-
fidence from its classifier. If no hypothesis exceeds a
certain threshold, reject all of them. This threshold will
be discussed in Section V-B.

C. Features

For the creation of features which represent the input of
the per-object classifiers, we first need to state that these
features need to be kept consistent over all classifiers. This
ensures the comparability of the individual confidence val-
ues. Effectively, keeping similar features over all classifiers
maintains consistency as well as the usage of a single, multi-
class classifier.

Apart from taking raw recognition scores, it is reasonable
to consider certain features which are derived from rankings
and distances between them. This way, in compliance with
Scheirer et al. [2], the classification results become more
invariant against offsets and scaling of the input scores. In
this context, we compute different features from the sorted
list of results produced by each recognition algorithm.

Hence, we use the top k scores s1, ..., sk from the sorted
list of algorithm results for the generation of the following
set of features:

• the raw recognition scores s1,1, ..., s1,n, s2,1, ..., sm,n of
all m objects in the gallery and n algorithms,

• the distances between the top and the (k−1) following
scores 〈∆1,2, ...,∆1,k〉 = 〈(s1 − s2), ..., (s1 − sk)〉 per
algorithm,

• the Discrete Cosine Transform (DCT) coefficients of the
top k scores per algorithm.

This sums up to a total of

mn + (k − 1)n + kn = (m + 2k − 1)n (1)

features. In order to find the optimal setting of k, experiments
showed that the classification quality varies with changing k
with a peak at k = 10 for our setting. This can be quantified
by the F-Measure like described in detail in Section V-A.
For k > 10, training and classification time rises due to the
increased number of features, but there is no improvement on
the classification results. In contrary, overfitting may occur
in this case which reflects in decreased classification quality.

Except from the raw recognition scores, all other features
depend on the ranking which is output by the respective
recognition algorithm, but not on one object only. With

these features, the classifier also takes the algorithm’s class
separation quality into account and emphasizes the distri-
bution of scores amongst the respective recognition results.
In contrary to this approach, we also evaluated the much
simpler approach of using only the raw recognition scores
as input features. As expected, this resulted in completely
insufficient classifications which is in accordance with [2].

D. Training Phase

Before any productive results can be obtained from a
supervised classifier, it needs to be trained with the help of
the previously mentioned features. Inputs and outputs used
therefore are described in the following:

1) Input: Let m be the number of training samples, n the
number of features calculated from the algorithms’ output
scores, Fi,j a distinct feature calculated from algorithm Aj’s
output, and Ci the binary class label (1 if the respective
object is represented by the score combination in this sample,
0 otherwise), then the matrix Y of training input samples is:

Y =


F1,1 ... F1,j ... F1,n C1

... ... ... ... ... ...
Fi,1 ... Fi,j ... Fi,n Ci

... ... ... ... ... ...
Fm,1 ... Fm,j ... Fm,n Cm

 (2)

2) Output: After conducting the training process for a
sufficient number of samples from different views and in
different poses, the emerging classifier for each object can
be used for the classification of objects the system was not
able to recognize before. The required number of samples
must be determined from the classifier’s performance; find
more information about this in Section V.

E. Classification Phase

This phase equals productive operation of the proposed
fusion approach. Before entering it, the training phase must
be completed. Then the following inputs and outputs become
valid:

1) Input: Like in the training process, Fj denotes a
feature calculated from algorithm Aj’s output, and n the
total number of features present. The only difference is the
missing class label which is the intended classification result.
Thus, the classification input vector Yi is:

Yi = [Fi,1, Fi,2, ..., Fi,n]. (3)

2) Output: As the classification result, the classifier will
output a binary decision whether the candidate to classify
belongs to the learned class (1 if the candidate matches
the trained object, 0 otherwise). Additionally, the classifier’s
confidence in terms of a probability is given by the error rate
of the classified sample. This probability can be formalized
as

P (Xc = Xi|Fc), (4)

where Xc denotes the candidate to classify, Xi a specific
trained object, Fc = [Fc,1, Fc,2, ..., Fc,n] the feature vector
of the candidate combining the features Fc,j of all algorithms
Aj , and n the total number of features present.



Fig. 4 – Object gallery used in our experiments.

F. Classifier Selection

To select a machine learning classifier, one has the choice
between a variety of supervised learning algorithms. Due
to our experiments conducted in Section V, Support Vector
Machines (SVMs) resulted in best performance for our object
recognition task. For our experiments, we used the popular
LibSVM implementation of Chang and Lin [17].

In general, SVMs impress by their good classification
performance and their guarantee to find an optimal solu-
tion. This stands in contrast with Neural Networks (NNs),
for instance, as these bear the risk of being stuck in a
local minimum. NNs also take longer to learn than SVMs.
Nevertheless, we also considered using Rprop [18] as an
algorithm implementing a Neural Network as well as the
C4.5 Decision Tree (DT) [19]. Decision Trees have the
advantage of their classification process to be understandable
intuitively in contrary to SVMs and NNs, but suffer from
worse classification performance.

V. EXPERIMENTS

We conducted several experiments to evaluate the ro-
bustness and performance of our classifiers under different
conditions. Like shown in Figure 4, our gallery used for
training and recognition consists of 45 objects varying in
size, shape, texture and color. We especially emphasize the
similarity of some objects in one of these properties while
there is diversity in others. Thus, for example, there are
several flavors of chips or sodas in a similar packaging, but
distinguishable in color or texture.

Our data set was collected from this object gallery under
varying conditions regarding scale, view angle and illumina-
tion. We recorded about 700 positive samples of each of the
45 individual objects to train our classifiers, which resulted in
30800 negative samples per object. From these, 500 positive
and 22000 negative samples per object were used for training
the respective classifiers. The remaining 200 positive and

avg. F-Measure
DT quality measure min #records

per node
gain ratio 5 0.8973
gain ratio 20 0.9003
gini index 5 0.8976
gini index 20 0.8969

NN
(2 hid. layers) #neurons #iterations

40 100 0.9959
40 200 0.9952
60 100 0.9966
60 200 0.9968

SVM
(RBF kernel) gamma cost

5 10 0.9985
5 25 0.9980
10 10 0.9932
10 25 0.9932

TABLE I – Cross validation results of different classifiers
on selected parameter sets

8800 negative samples enabled us to validate the classifier
performance on a data set completely independent from the
original training set. This will be explained in detail in the
next section. As for the number of input features for the
classifier, running three algorithms on these 45 objects with
k = 10 resulted in 192 features according to Equation 1.

For the model creation of our gallery, we set up an
automatic turntable which works like in [9], with the Kinect
sensor mounted at different heights and collecting data from
360 degrees around the objects.

A. Classifier and Parameters

To consistently verify the classifier and parameter selection
over all object classes, we used split-data validation with a
fixed partition after running 10-fold cross validation with
randomly drawn samples on a variety of parameter sets.
This means that, after optimizing the classifier parameters
using cross validation, these were validated on the separate
testing set. As a metric, the average F-Measure over all
objects’ classifiers was taken to assess the quality of different
classifiers and parameter sets.

The experiment was run on a decision tree with different
parameter sets as well as on a neural network and a support
vector machine, respectively. Table I shows the resulting
average F-Measures using selected parameter sets. Previous
experiments on a subset of our training data showed that this
selection of all possible parameter sets produces the most
promising results. The average cross validation results of all
object classifiers using these parameter sets differ only by
marginal values of magnitude 10−3 as in Table I.

One more important thing to note is the fact that, for prac-
tical applicability, training times for the respective classifiers
indeed play a role as they differ quite a lot. The difference
between a DT which takes a couple of seconds to learn in
our setup, an SVM which takes about 30 minutes and a NN
which can take up to several hours is a significant factor,
especially because we need to train one of them for each
object in the gallery.



0.2

0.4

0.6

0.8

1.0

0
2 3 4 5 6 7 8 9 10 iteration

confidence

1

0.2

0.4

0.6

0.8

1.0

0
2 3 4 5 6 7 8 9 10 iteration1

0.2

0.4

0.6

0.8

1.0

0
2 3 4 5 6 7 8 9 10 iteration1

0.15

0.1

0.05

0

confidence

confidence

Fig. 5 – Evaluation of the classifier’s separation quality
by ten iterations on three exemplary objects under varying
conditions – the green bars on the left and the red bars on
the right of each iteration denote the respective classifier’s
confidence for the first-ranked and the second-ranked object,
respectively. The true objects are shown on the right; they
correspond with the green bars. All second-ranked confi-
dence values are less than 0.02.

Hence, against the background of the cross validation
results of Table I and having the advantages and drawbacks
of the respective classifiers in mind (see also Section IV-F),
we decided to use a support vector machine with gamma =
5, cost = 10 in our system. Afterwards, this configuration
was tested on the independent testing data set. This resulted
in an average F-Measure of 0.9989, which implies that
there were only very occasional misclassifications on the
testing data set. However, this number does not directly
reflect the system’s classification performance on real-world
examples, but serves to select the classifier parameter set for
the following experiments.

B. Ranking Separation Quality and Rejection Threshold

Next, the ranking for correct classification results was
evaluated using our testing data set with respect to the
separation quality between the first-ranked (correct) and the
second-ranked (incorrect) hypothesis. The metric used here
is the confidence which is given by the SVM with each
binary classification result as explained in Section IV-E. In
the best case, the first-ranked hypothesis will appear with a
confidence of 1, the second-best with a confidence of 0.

As shown in Figure 5, this works very well because,
even in cases where the first-rank confidence drops to less
than 0.1, second-rank confidences still reside at well below

Fig. 6 – One example of illumination change represented
in the training and testing data set. Both images were taken
with identical aperture, shutter and light sensitivity settings.

0.02. We observed this effect in all our experiments, so we
decided to set the rejection threshold in our framework to
0.02. For this setting, correct first-rank hypotheses are ac-
cepted reliably while avoiding to report incorrect hypotheses
which occasionally occur if the respective classifier fails to
positively recognize an object.

C. Robustness Under Difficult Conditions

Another experiment was conducted under strongly varying
conditions regarding the training and testing data set. These
include changes of the viewpoint and illumination in a way
that was not represented during training. Figure 6 shows
an example of illumination variation, images taken with
identical aperture, shutter and light sensitivity settings. As for
the viewpoint changes, using the same automatic turntable
as for model creation allowed us to vary viewpoints in a 45
degree pitch and 360 degree yaw range as well as distances
from the capturing device between 80 and 120 cm.

We paid attention to distribute these variations randomly
over the training and testing data set. The proposed method
was run 30 times on a selected set of our objects in order
to evaluate the quality of our training data as well as
proving the robustness of our approach. A sophisticated test
structure was needed to create a setting where each run was
reproducible, but sufficiently distinct to ensure the validity
of the experiment due to a real-world-like distribution of the
testing samples. This is the reason why we limited the test
repetitions to the number of 30 which was achievable with
reasonable efforts.

Figure 7 shows an exemplary representation of correct
and incorrect recognition results for different objects as
well as those below the rejection threshold. In general, our
approach performs well regarding incorrect hypotheses as
there are very few of them. The ratio of incorrect recognitions
appearing for the orange juice package (blue part of the
middle bar) is caused by one of the other very similar
juice packages, the incorrectly recognized Coke cans (blue
part of the bottom bar) represent a similar-looking Coke
can of smaller volume (see Figure 4). The latter failures
were mostly caused by the can’s point cloud being cropped
through infrared light interference which results from the
Kinect hardly being able to deal with reflective metallic
surfaces.



0 10 20 30 40 50 60 70 80 90 100%

Fig. 7 – Classifier performance on selected objects under
conditions strongly differing to those in training – correct
hypotheses are shown in green (left part of the bars), incor-
rect hypotheses in blue (center), results below the rejection
threshold in red (right).

Apart from these exemplary objects as shown in Figure
7, the majority of our gallery objects behave approximately
like the orange juice package. They show very occasional
incorrect hypotheses and results below the rejection threshold
in a range of 10-35%, but all other candidates are reliably
recognized.

These experiments allow us to draw a major conclusion:
If the user encounters incorrect recognition hypotheses, this
indicates that they should sample more training data under
these particular environmental conditions. Even if indepen-
dent test data is used to verify classification accuracy like the
one in Table I, the classifier is unable to optimally generalize
under extremely changing conditions.

However, the results below the rejection threshold in
Figure 7 do not have dramatic effects on the overall object
recognition accuracy as there is an easy way to deal with
them: If encountering an object which the robot is unable to
identify, it can, for instance, change its viewpoint by moving
a little to either side. This way, the object may be identified
even if the first recognition run was unsuccessful. Special
value arises from the fact that we detect the object first by
clustering the scene into possible objects instead of running
one-size-fits-all recognition on the whole scene. This makes
it possible to know that there is an object and, in case of an
unsuccessful recognition iteration, gather new sensor data
and run the recognition pipeline once again.

D. Training and Classification Time Performance

Regarding the time needed for training, we ended up
with the 45 SVMs taking about 30 minutes per classifier to
complete on on one core of a standard 3.1-GHz CPU, that
equals 22.5 hours in total. This time does not play a major
role, though, as training needs to be done only once prior to
productive operation. Much more crucial is the time needed
for running the classification which took about 5 ms per
classifier. Integrated with data acquisition, segmentation, and
clustering, we were able to optimize the whole recognition
process to run in about 2 seconds on a setting which includes
a table with one object on top of it.

VI. CONCLUSION AND FUTURE WORK

Our approach shows the application of established Ma-
chine Learning techniques to multi-algorithm object recog-
nition problems. This is of interest especially in a context

where different sensors and recognition algorithms need to
be integrated into a system without the hassle of adapting
hypothesis metrics to a common basis. Instead, outputs of
different object recognition approaches are combined auto-
matically. In real-world robotic environments, the method
proposed in this paper may lead to many interesting appli-
cations due to its robustness.

As a real-world example, the proposed method was im-
plemented on our service robot Kate. Please have a look on
our YouTube channel to see Kate operate in a living room
environment using our object recognition technique:
http://www.youtube.com/RoboticsHSWgt.

One drawback of the current approach is the necessity
to extend the number of features with the addition of new
objects to the training gallery. This also means that the
recognition algorithms have to be re-run and features have
to be generated again to fill the extended feature space. Af-
terwards, the classifiers have to be re-trained. Unfortunately,
this effect is not avoidable by any of the supervised learning
algorithms we examined in this work. One remedy at least
to the dilemma of having to re-train the classifiers might be
several promising semi-supervised learning approaches that
have emerged in the past years and allow for online learning
at runtime, thus sparing the user from waiting for re-training
to be finished.

Additional work should also be put into finding features
generated by the object recognition scores in order to replace
the raw recognition scores from Section IV-C. This way,
with a fixed selection of features independent from the
object gallery, it is only classifier training which needs to
be repeated on gallery extension. Investigating and utilizing
both these suggested changes, the process of adding more
objects to the gallery becomes much easier to handle.

Possible future endeavors also include multi-level object
classification, where objects can be grouped into hierarchical
structures containing similar objects. Machine learning meth-
ods may provide crucial assistance because they are capable
to separate object classes automatically.

Another benefit can be derived from machine learning
when it comes to determining the rejection threshold for
hypotheses as in Section V-B. From the results of the
classifiers desribed in this paper, another super-classifier can
be learned which is able to reject a sub-classifier’s hypothesis
if its confidence is too low.

To get a more accurate representation of real-world sit-
uations the recognizable objects can be found in, a more
professional training data capturing device should be taken
into account like the one used for building the KIT object
database [11], a 360 degree yaw / 90 degree pitch high
accuracy laser scanner / stereo camera combination.

Additionally, the importance of illumination for objects to
distinguish mainly by color rises the demand for a replace-
ment of the currently used conventional color histograms. We
are already working on the integration of Color Correlograms
[20] as an advanced color-based measure which may come
handy by taking spatial relationship between colored areas
into account.



Finally, we are currently working on the replacement of
MOPED by an approach making use of the ORB descriptor
[21] whose training runs on RGB-D data from the Kinect
instead of high-resolution images. As soon as these works
are completed, we will be able to attach an object database
like RoboEarth [10] or the KIT database which enables us to
choose from an even greater variety of objects and provide
for a lot more applications and real-world examples.

ACKNOWLEDGEMENTS

The authors would like to thank Janos Knobloch, Karl
Glatz, Markus Mauer, Martin Bertsche, Richard Cubek,
Stephan Schädle, and Vien Ngo for fruitful discussions
as well as Alvaro Collet, the creator of MOPED, for his
generous support.

This work was conducted within the Collaborative Center
for Applied Research on Service Robotics (ZAFH Service-
robotik) and supported by research grants of the state of
Baden-Württemberg and the European Union.

REFERENCES

[1] W. Scheirer, A. Rocha, R. Micheals, and T. Boult, “Meta-Recognition:
The Theory and Practice of Recognition Score Analysis,” IEEE
transactions on pattern analysis and machine intelligence, vol. 33,
no. 8, pp. 1689–1695, August 2011.

[2] W. Scheirer, A. Rocha, J. Parris, and T. Boult, “Learning for Meta-
Recognition,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 7, no. 4, pp. 1214–1224, Aug. 2012.

[3] H. Wu, M. Siegel, R. Stiefelhagen, and J. Yang, “Sensor Fusion Using
Dempster-Shafer Theory,” in Proc 19th IEEE Instrumentation and
Measurement Technology Conf, vol. 2, no. May, 2002, pp. 21–23.

[4] M. Aeberhard, S. Paul, N. Kaempchen, and T. Bertram, “Object
Existence Probability Fusion using Dempster-Shafer Theory in a
High-Level Sensor Data Fusion Architecture,” in Intelligent Vehicles
Symposium, Baden-Baden, Germany, 2011.

[5] L. Di, T. Fromm, and Y. Chen, “A Data Fusion System for Attitude
Estimation of Low-cost Miniature UAVs,” Journal of Intelligent &
Robotic Systems, vol. 65, no. 1–4, pp. 621–635, 2012.

[6] S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller,
“Integrating Visual and Range Data for Robotic Object Detection,”
in Workshop on Multi-camera and Multi-modal Sensor Fusion Algo-
rithms and Applications, Marseille, France, 2008.

[7] M. Attamimi, A. Mizutani, T. Nakamura, T. Nagai, K. Funakoshi, and
M. Nakano, “Real-Time 3D Visual Sensor for Robust Object Recogni-
tion,” in IEEE/RSJ Internation Conference on Intelligent Roboots and
Systems, 2010, pp. 4560–4565.

[8] A. Janoch, S. Karayev, Y. Jia, J. Barron, M. Fritz, K. Saenko, and
T. Darrell, “A Category-Level 3-D Object Dataset: Putting the Kinect
to Work,” in First IEEE Workshop on Consumer Depth Cameras for
Computer Vision at the International Conference on Computer Vision
(ICCV), 2011.

[9] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view RGB-D object dataset,” in IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, May 2011.

[10] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“Roboearth,” Robotics Automation Magazine, IEEE, vol. 18, no. 2,
pp. 69–82, 2011.

[11] R. Becher, P. Steinhaus, and R. Dillmann, “Interactive object mod-
elling for a humanoid service robot,” in International Conference on
Humanoid Robots 2003, Karlsruhe, Germany, 2003.

[12] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 2011.

[13] M. Bertsche, T. Fromm, and W. Ertel, “BOR3D: A Use-Case-Oriented
Software Framework for 3-D Object Recognition,” in IEEE Confer-
ence on Technologies for Practical Robot Applications, Woburn, MA,
USA, 2012.

[14] A. Collet, M. Martinez, and S. S. Srinivasa, “The MOPED framework:
Object Recognition and Pose Estimation for Manipulation,” The Inter-
national Journal of Robotics Research, vol. 30, no. 10, pp. 1284–1306,
Sep. 2011.

[15] W. Chen, Y. Shi, and G. Xuan, “Identifying Computer Graphics
using HSV Color Model and Statistical Moments of Characteristic
Functions,” in IEEE International Conference on Multimedia and
Expo, Beijing, China, 2007.

[16] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
Jun. 1981.

[17] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011.

[18] M. Riedmiller, “Rprop - description and implementation details,”
Technical Report, 1994.

[19] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[20] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, “Image
Indexing Using Color Correlograms,” in IEEE Computer Science
Conference on Computer Vision and Pattern Recognition, San Juan,
Puerto Rico, 1997.

[21] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient
alternative to SIFT or SURF,” in IEEE International Conference on
Computer Vision, Barcelona, Spain, 2011.


