
Department of

Electrical Engineering

and Computer Science

Master’s Thesis

Recurring Adaptive Segmentation and

Object Recognition

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree

of

Master of Science
in

Computer Science

By: B. Sc. Martin Bertsche

Mat. No.: 21734

First Examiner: Prof. Dr. rer. nat. Wolfgang Ertel

Second Examiner: Prof. Dr. Ing. Konrad Wöllhaf

Submission Date: 31. August 2012

Affidavit

I assure that I have written this thesis myself. No further sources or aids were used
than those explicitly stated. All citations in this work are labeled as such.

,
(Place, Date) (B. Sc. Martin Bertsche)

i

ii

Abstract

Object recognition approaches which are currently used, mostly rely on segmentation
for two reasons. They either are based directly on pre-segmented data or they ben-
efit largely from segmentation in terms of required computation time. In the field of
Service Robotics the applied segmentation approaches and therefore, the work environ-
ment are often limited to tabletop environments. This thesis investigates methods of
extending the current segmentation capability by selecting between different segmenta-
tion approaches and algorithm parameter sets. In order to know which choice to make
an object recognition based quality metric for point cloud segmentation is developed.
A method is proposed that allows the robot to autonomously decide which algorithm
and parameter set to use. It is shown that using multiple segmentation approaches
and parameter sets can widely increase the the number of scenarios suitable for object
recognition

ii

Contents

Affidavit i

1 Introduction 1

1.1 Motivation . 2
1.2 Approach . 4
1.3 Tools . 6

2 Segmentation Algorithms 8

2.1 Color-based Segmentation . 8
2.2 Scene Interpretation . 12
2.3 Spectral Clustering . 16
2.4 Expectations . 22

3 Segmentation Quality 27

3.1 The 2D World . 27
3.2 Recognition Quality . 28
3.3 An OR Based Quality Metric . 36

4 Optimization and Analysis 39

4.1 Scene Selection . 39
4.2 Generic Parameter Sets . 44
4.3 Segmentation Results . 54

5 Conclusion 60

Bibliography III

A Original Thesis Specification IV

A.1 Introduction . IV
A.2 Work Packages . V

B VFH - Training Manual VIII

B.1 Data Acquisition . VIII

iii

B.2 Training . XII

C Recognition Table XIII

iv

Chapter 1

Introduction

The ability to perform image segmentation comes naturally to humans and many an-
imals. We use it in almost every part of our lives since eyesight is the main way how
we perceive the world around us. It is our ability to semantically partition the images
passed from our eyes to our brains in an incredibly short period of time. Unfortu-
nately, the high-level processes taking place inside our brains to perform this task are
not very well understood. Even if they were, it is highly improbable that hardware
or software can be created in the near future to replicate this behaviour on a similar
performance level. Segmentation is therefore a major research topic as it has been
since the beginning of digital image processing in the 1960s.

Within digital image processing segmentation comes in many different forms that de-
pend on the particular use case. In industrial image processing one of the main tasks is
to perform quality checks on work pieces such as a photogrammetric survey or checks
for completeness after assembly. Almost all of these tasks are performed applying some
sort of segmentation. Lighting and camera optics are optimized to a level that the de-
tection of a work piece is often reduced to finding lighter or darker areas in an image.
The results are so highly accurate that they can even be used for measurement.

In medicine a very well known application of digital image processing on 3D data is
magnetic resonance imaging which enables Physicians to virtually view a patients body
on the inside. 3D segmentation assists doctors in performing their diagnosis. Physicians
are able to virtually highlight or remove individual organs, vessels, bones and other
sorts of tissue. However, in contrast to most other 3D segmentation disciplines the
types of media like liver tissue or muscle tissue can already be identified by the imaging
process itself, making the job of segmentation considerably easier.

Today’s cartography also relies on 2D and 3D imaging from satellites and airborne
camera systems. Segmentation is used to extract elements such as roads, fields, houses
or even whole cities. Even today these processes cannot be fully automated. Automati-

1

CHAPTER 1. INTRODUCTION

cally generated results need to be manually checked and corrected as needed. However,
as in industrial or medical image segmentation the goal is always to identify parts of
consistent semantics inside the data.

Semantics is the key term which makes segmentation such a difficult task for software
developers and scientists in the field of computer vision. Just consider the term ”road”
for a moment and envision how many images can be imagined. These are your image
based semantic associations with the term. A computer has no such associations and
is therefore not capable of extracting roads from an image without further help. The
software developer has to define a model for ”road” in terms of the image data. An
example of a simple and also very bad model could be: ”Roads are gray.” Assuming a
good definition of ”gray” exists it is certainly possible to make up other gray entities
that can occur in areal images that are not necessarily roads. The computer vision
developer must be skilled at defining such models and encoding them in software.
The task becomes even harder as levels of abstraction are introduced that widen the
semantic range and make borders blurry between parts that belong to one segment
and parts that belong to another.

1.1 Motivation

This Master’s Thesis is set in the field of mobile service robotics which is dedicated to
developing robots that help people with their household tasks. A major requirement for
a service robot is therefore, its ability to perform manipulation tasks like making coffee
or setting the table. These tasks involve objects that are to be handled such as a cup
for example. Before any action takes place, the objects required for the task must be
identified and located. Segmentation is performed in order to isolate object candidate
clusters within the acquired data which are subsequently processed for identification.
Today’s robots mostly use 3D sensors to perceive their environment. Segmenting 2D
or 3D data for objects is one of the most demanding tasks because the semantics of
”object” is so generic. A model for the term ”object” has to be devised that covers
very different entities such as a book and a coffee maker. However, before going deeper
into the matter a few terms need to be defined:

Segmentation labels the pixels in an image or the points inside a point cloud such
that ideally all points having the same label belong to the same real world object
in the scene. The definition of a real world object however can vary depending
on the application.

Object Recognition is a two-step process consisting of training and recognition.
Training describes the process of gathering sensor data belonging to a real world
object which is subsequently transformed into a model. Recognition is the pro-
cess of matching new sensor data to models in a database of known objects. The
output is the matched model’s identifier or name.

2 Martin Bertsche

1.1. MOTIVATION

Pose Estimation is an optional capability of an object recognition approach. It
means that in addition to the corresponding model name the object’s position
and orientation can be determined as well.

All object recognition approaches which are currently used by our work group rely
on segmentation for at least one of two reasons. The first reason is that the object
recognition approach is based on a global description of object candidate clusters.
Such descriptions can be bounding boxes that encode the object’s dimensions but also
color histograms encoding information about the objects texture1. This means that
the candidate cluster is transformed into a representation that is compatible with the
model data stored in the database of known objects. It is required that the candidate
cluster contains as few falsely segmented points as possible. The second reason is
the processing time. There are also object recognition approaches that do not rely
on segmentation for recognition whereas they do for training purposes. Instead of
describing all the data belonging to the object, distinctive features are extracted that
are likely to be recognized when the object is scanned again. The features are usually
computed for each pixel or point which can result in overwhelming computational
overhead. By using data segmentation not all data points need to be inspected, which
clearly reduces computation time.

Currently there are four different object recognition approaches implemented on our
demonstration system including a simple bounding box algorithm, color histograms [7],
a SIFT [13] based approach and Viewpoint Feature Histograms [19]. However, there is
only one rudimentary segmentation algorithm which is optimized for an IKEA kitchen
table. The robot’s work environment is therefore limited to the table and the top of
a sideboard for which segmentation results are already deteriorating. This situation is
not acceptable for a robot that is to demonstrate suitability for daily use. Thus the
motivation for this thesis is the need to extend the robot’s work environment.

Three major challenges have been identified: The first challenge is the problem of
over- and under-segmentation of objects. Under-segmentation means that segments are
spread across multiple real world objects which leads to two or more objects being seen
as one by the robot. Over-segmentation being the opposite case relates to segmentation
where one real world object is represented by multiple segments. The main source for
light cases of these undesirable effects is improper algorithm parametrization. Choosing
a different parameter set can quickly solve the problem.

The second challenge are scenes that cannot be segmented at all by the current ap-
proach because major assumptions encoded in the algorithm are not fulfilled. Such
cases can only be mastered by using alternative segmentation approaches.

1Texture in this context relates to surface color and print. It does not relate to the surface’s
character.

martin@martinbertsche.dyndns.org 3

CHAPTER 1. INTRODUCTION

The last challenge is the segmentation of objects containing other objects such as
shelves or other furniture. The problem here is the desired level of detail which has a
strong influence on what is to be counted as real world object. A general observation
for segmentation algorithms is that they perform better when the desired segments
are approximately of equal size. The question when segmenting a shelf is whether its
contents should be part of the shelf segment or have their own segments. This of course
depends on the use case. If the task is just to find the shelf no segmentation of its
contents is necessary.

The goal of this thesis is to implement a segmentation and object recognition approach
that extends beyond the demonstration system’s current capability and addresses at
least two of the three challenges stated above.

1.2 Approach

This section briefly describes the approach for tackling the challenges as stated in
Section 1.1. It adheres to the definition of the thesis proposal which is printed in
Appendix A for further reference. In addition to an alternative description of the
approach it also contains a definition of six work packages along with the questions
that need to be answered in this document. Please note that this thesis only covers a
subset of the work packages since the proposal exceeds the scope of a Master’s Thesis
by far. For clarification the work packages covered by this thesis are are discussed after
the approach along with an outlook over the chapters of this document.

1.2.1 The Proposed Approach

In order to extend the current segmentation and object recognition capability, flexi-
bility must be increased. Since over- and under-segmentation primarily occur due to
improper parametrization of the segmentation algorithms, static parameter sets are
no longer an option. Using a single parameter set for an algorithm limits its segmen-
tation capability considering that slight parameter adjustments can largely improve
segmentation performance for otherwise difficult scenes. Therefore multiple parameter
sets must be available for each algorithm. However, it would be unwise to have highly
specialized parameters for every single scene. Instead a small set of parametrizations
should be found which are applicable for larger numbers of scenes. This increases the
probability for the parameter sets to also apply to scenes for which they have not been
optimized. A method for finding such parameter sets needs to be developed.

Flexibility is further increased by adding additional approaches to the segmentation
repertoire. These algorithms must be carefully chosen in a way that the set of algo-
rithms achieves a high degree of versatility. A rule of thumb for the algorithm selection
should be the use of heterogeneous approaches. Strongly related approaches are very

4 Martin Bertsche

1.2. APPROACH

likely to fail under similar conditions. Heterogeneous segmentation algorithms are ex-
pected to be complementary such that the failure of one approach at segmenting a
given scene is compensated by the success of another approach.

Given a set of algorithms and a set of parametrizations per algorithm it should be
possible to considerably improve segmentation and recognition beyond the capabilities
of the current system. However, the choice of algorithm and parameter set must be
manually configured for each scene. This is possible since information about which
type of scene to expect can be obtained from the robot’s self localization system.

In order to fully automate the selection process by applying a trained classifier is
a straight forward approach. The classifier must learn to map a given scene to a
suitably parametrized algorithm. A method for scene description, similar to the global
description methods used for object recognition, must be developed since raw point
cloud data is not a suitable input vector. The input labels needed for training represent
the best parametrized algorithm for a given scene and must be automatically generated
as well. Manual assessment of segmentation results for many scenes is tedious and
may also be biased in the case of similar results. Therefore a segmentation quality
benchmark is needed. A sufficiently trained algorithm is expected to make correct
choices also for unknown scenes.

For the segmentation of large scale objects like furniture that may support other ob-
jects, a hierarchical approach is proposed. Segmenting furniture requires a segmen-
tation approach that is able to detect the coarse structure of a scene without being
disturbed by inhomogeneities introduced by the furniture’s contents. Such an approach
is very likely to lead towards under-segmentation. If necessary the coarse segmentation
can be applied recursively to its sub-segments until the segments are identified as known
objects or become too small. The segmentation of furniture contents is most probably
an ill-conditioned task for such a coarse segmentation approach. As the sub-segments
become smaller it becomes likelier that the segments are not further subdivided by the
next recursion step. Therefore, recursion must also stop if coarse segmentation does
not progress. In this case segments have to be passed on to the regular segmentation
algorithm.

1.2.2 Processed Work Packages

The first work package demands the implementation of at least three different segmen-
tation approaches which are necessary to generate a versatile set of algorithms. In
Chapter 2 the implementations of Color-based Segmentation, Scene Interpretation and
Spectral Clustering are discussed in depth. Furthermore reasons for choosing this set
of algorithms are given in Section 2.4 along with the reasons as to why the algorithms
are expected to be complementary.

Chapter 3 is dedicated to the definition of a segmentation quality metric. An existing

martin@martinbertsche.dyndns.org 5

CHAPTER 1. INTRODUCTION

approach for scoring 2D segmentation, which can be used for 3D segmentation as well,
is evaluated. However, it requires an amount of work force that is not available for this
thesis. Therefore an alternative segmentation quality metric is devised which is based
on object recognition performance. The work done here strongly relates to the fourth
work package in the thesis proposal. It demands the implementation of a segmentation
quality metric in order to automatize data set labelling for classifier training. However,
in this work the segmentation quality metric is used differently.

The second and third work package are covered by Chapter 4. In Section 4.1 justifica-
tion for the scenes that were chosen to test the approach is provided. Their character-
istics are compared to the strengths and weaknesses of the segmentation algorithms.
In Section 4.2 manual parametrization is discusses along with an initial performance
evaluation of the single algorithms. Fine tuning of the parameters is performed in
this section as well. The segmentation quality metric derived in Chapter 3 is used to
implement a brute force parameter optimization approach. A voting based approach is
proposed to extract generic parameter sets from the results of the brute force optimiza-
tion. Section 5 evaluates the parameter sets regarding their segmentation performance
and applicability for automated selection.

1.3 Tools

The most important tool used on the hardware side is the MicrosoftTMKinectTM. It
is equipped with a 2.5D depth sensor capable of VGA resolution and an SXGA RGB
camera. The depth sensor developed by PrimeSense is using an infrared pattern,
also called structured light, which is projected on the environment and recorded by an
infrared camera. Geometric deformations of the pattern are used to calculate a distance
for each sensor pixel to the next surface in its line of sight. The pattern consists of
three different layers. Many small patterns of low intensity are designed for low distance
measurement. Further layers are designed for medium and long distance measurement.
They have increasing pattern sizes and increasing intensity whereas their resolution
decreases. This results in reduced resolution along the z-axis with increasing distance.

An important tool on the software side is the Point Cloud Library (PCL) [20]. It is
an extensive tool set for point cloud processing offering implementations of many basic
algorithms. In addition to the algorithmic side it also provides many utilities such as
an easy-to-use interface for 3D sensors and data formats for filesystem persistence.

All software written for the purpose of this thesis is implemented using the BOR3D
[5] Framework. The framework is designed to facilitate the development of new signal
processing algorithms by offering ways to quickly create an environment which already
performs data acquisition and preprocessing if needed. It is also designed such that
single processing steps can easily be replaced by alternative approaches without the
need to rewrite large portions of code. Its main advantage is however that it is freely

6 Martin Bertsche

1.3. TOOLS

available to anyone at SourceForge.

martin@martinbertsche.dyndns.org 7

Chapter 2

Segmentation Algorithms

2.1 Color-based Segmentation

A straight forward approach to the 3-D point cloud segmentation problem is the Color-
based Segmentation 1 approach as proposed in [24]. The basic agglomerative method
extends standard euclidean clustering with the ability to consider color information
available for each given point. It is further extended by a refinement step. This
discussion will cover the differences between standard euclidean clustering and CbS
as well as some necessary differences between the proposed approach and the actual
implementation used for the purpose of this thesis.

2.1.1 Comparison of CbS and Euclidean Clustering

In order to better understand color based segmentation a quick discussion of the un-
derlying euclidean clustering operation is needed. Let

P = {p1 . . . , pn} with P ⊂ R
3

be a set of points or alternatively a point cloud. Further let

knn : {P,R3,N} → Q,Q = {q1, . . . , qm} ⊂ P

be a function returning the m nearest neighbors in P for an arbitrary point in three-
dimensional euclidean space. The desired result is a set of clusters

S = {C1, . . . , Ct} where ∀j, k : j, k ∈ {1, . . . , t}, j 6= k, Cj ⊂ P,Cj ∩ Ck = ∅.

1Throughout the rest of this thesis Color-based Segmentation will be abbreviated by CbS.

8

2.1. COLOR-BASED SEGMENTATION

This is the same result that is asked for with any segmentation algorithm. The pseudo
code in Algorithm 2.1 explains how the set S is obtained. The runtime complexity of

Algorithm 2.1 Euclidean Clustering(P, l,m)

S ← ∅, R← ∅
while

⋃t
j=1Cj 6= P do

R← R ∪ {p} with p 6∈ ⋃t

j=1Cj

C ← ∅, C ← C ∪ {p}
while R 6= ∅ do

R← R \ {q}
for all r ∈ knn(P, q,m) do

if
(

r ∈ ⋃t
j=1Cj

)

∨ (||q − r||2 < l) then

continue

else

R← R ∪ {r}, C ← C ∪ {r}
end if

end for

end while

S ← S ∪ {C}
end while

return S

Algorithm 2.1 cannot be seen directly because of the coupling of the two innermost
loops. The outer loop’s complexity is clearly O(n). Its sole purpose is to provide an
initial cluster point if no further points fulfil the euclidean distance criterion for the
current cluster. Using appropriate data structures it can be guaranteed to iterate over
the points in P only once. The innermost loop’s runtime is also easy to see since it
will always iterate over the m nearest neighbours and thus is O(m). The second loop’s
runtime seems to depend on the amount of new points added by the innermost loop.
However when looking closer at the collaboration of the innermost and outermost loops
it becomes clear that in any case it will run exactly once per point in P . If a k-d tree
[4] data structure is used to perform knn which can be created in O(n) and queried in
O(log(n)) time, an upper bound is given for the whole algorithm by O (n2m log(n)).

Obviously the termination condition for the two innermost loops constructing the clus-
ters Cj is only triggered by the distances between the points in P . So the algorithm is
looking for contiguous regions Cj in P that are separated by gaps of minimum width
l. Cases where this approach fails to satisfy the demand of a bijective mapping among
the clusters found and the real world objects are easily constructed.

Consider an artificial scene where a cube is sitting on a plane. Although the cube and
the plane are different objects there is no such gap between the two which could be
used to separate them. Extending this consideration it can be said that whenever there

martin@martinbertsche.dyndns.org 9

CHAPTER 2. SEGMENTATION ALGORITHMS

exists an undirected, weighted Graph G(V,E), where V = P with weights defined as
the euclidean distance between connected vertices and all weights being smaller than
l, S will have only one element C1 = P . Unfortunately, this is very prominent in 2.5-D
sensor data making Euclidean Clustering ineffective when used on its own.

Zhan et. al. overcome this problem by using a sensor which is able to provide color in-
formation at each sampled point. The basic algorithm which they call Region Growing
is extended by adding a color-based point rejection criterion. They define a colorimet-
ric dissimilarity measure to be the euclidean distance between two vectors λ = [r, g, b]
containing the point’s color encoded as RGB. In addition to the distance threshold l,
a colorimetric dissimilarity threshold α is introduced. They also divided the operation
into two processing passes. Region Growing being the first pass has to do prepara-
tory work for the second pass by collecting statistical data about the color distribution
inside a cluster Cj such as the mean color and the standard deviation.

The second pass performed by Zhan et. al. is called Merging and Refinement. In
essence this step is a repetition of Region Growing performed on the clusters Cj ∈ S
instead of the points p ∈ P . In order to handle the clusters in almost the same way
as it is done with the points, the statistical data collected in the previous step is
used. A cluster’s position is defined by its center of gravity, its color is the mean color
of the points it contains. With these definitions a conversion of Region Growing to
merge adjacent regions with similar colors is trivial. All that is needed is another set
of thresholds lreg and αreg to perform region rejection analogously to point rejection.
This step is extended by a search for regions that contain less than a desired number
of points d. These regions are merged with their respective nearest neighbours in
euclidean space.

Since the second processing pass of CbS is done on t clusters - a number that is
significantly smaller than n - we can neglect its runtime complexity because the first
pass will dominate. The changes made in Euclidean Clustering to perform Region
Growing are a second threshold operation with complexity O(1) and the statistics
update for the clusters which is done whenever a new point is added. Updating the
statistics requires to look at all points inside the cluster. So the worst case is that
all points belong to the same cluster resulting in O(n) complexity for such an update.
Therefore Region Growing as proposed by Zhan et. al. has a runtime of O(n3m log(n)).
However looking back at the box-on-a-plane example the algorithm is now able to
cluster the scene correctly if the plane and the cube are colored differently.

2.1.2 Implementing Color-based Segmentation

Transforming the pseudo code from Algorithm 2.1 to any programming language is
straight forward as long as the k-d tree and some basic data structures for sets and
lists are available. However two changes were made during implementation. The first

10 Martin Bertsche

2.2. SCENE INTERPRETATION

Figure 2.1: Example of Color-based Segmentation segmenting the contents of a drawer.

reduces the complexity of Region Growing from O(n3 log(n)m) to O (n2 log(n)m). This
is achieved by moving the computation of a region’s center of gravity and its mean color
out of the innermost loop to the outermost loop. Since these values are used nowhere
else inside the Region Growing process, this does not affect the algorithm’s final result.
The second alteration concerns the final merging step in the second processing pass.
The proposed algorithm joins clusters Cj with |Cj | < d to their nearest neighbouring
cluster. The implementation used for this thesis however does not follow the proposal
since stray points can occur due to noise of the sensor used. Instead these small clusters
are dropped and will not be considered in the algorithm’s output.

isolate planar points

create plane models

create plane shapes

crop hierarchically

Figure 2.2: Simplified processing pipeline of the scene interpretation segmentation
approach.

martin@martinbertsche.dyndns.org 11

CHAPTER 2. SEGMENTATION ALGORITHMS

Figure 2.3: ScI Segmentation. On the left the result of planar surface detection can be
seen including the convex hull. The object candidate clusters are shown on the right.

2.2 Scene Interpretation

Throughout this thesis the segmentation approach suggested by Rusu et. al. in [20] will
be called Scene Interpretation (ScI). The goal of this approach is to use segmentation
and surface reconstruction methods in order to create 3-D models of objects in the
scene in real time. The models can then be used to plan manipulation tasks such as
grasping.

Matching the scope of this thesis the surface reconstruction part of the proposed al-
gorithm is omitted and only the segmentation approach – which is highly specialized
for household environments – is considered. In contrast to CbS from Section 2.1 this
approach does not use any color information and it does not rely on a single processing
step to perform scene segmentation.

The assumption of ScI’s segmentation approach is that objects of interest to a service
robot are always located upon planar surfaces such as the floor, a table, a cupboard
or a kitchen counter as shown in figure 2.3. The idea is to identify and isolate these
planar surfaces inside a scene. Knowing the shape and position of the surfaces makes
it possible to isolate those points which are on top of them and therefore belong to the
objects of interest. These points are then clustered in a euclidean sense to associate
them with the individual objects.

A large set of specialized processing steps is used. Since so many steps are involved
the discussion of the process is divided into the four parts which can be seen in Figure
2.2.

12 Martin Bertsche

2.2. SCENE INTERPRETATION

2.2.1 Isolating Planar Points

The goal of the first two steps is to find all planar surfaces inside the scene which are
parallel to the ground. At first only those points are of interest who have a normal
pointing approximately upward. For that reason it is necessary to know the sensor’s
orientation relative to the ground so that an up-vector eu can be defined.

In the given environment there exist at least two ways to obtain this information. (1)
The sensor itself is equipped with a built-in accelerometer. However being mounted
on a mobile platform a lot of noise in the data read from the accelerometer is to
be expected. This uncertainty disqualifies the method for ScI. (2) Alternatively the
last command of the pan-tilt unit (PTU) – a device to adjust the sensor’s pitch and
yaw angles – can be used to get the sensor’s orientation. Currently the segmentation
algorithms are running as standalone software. Therefore the current orientation is a
configuration parameter that stays fixed for all scenes.

Next the orientations of the points p ∈ P need to be determined. This is done using the
knn function already known from Section 2.1. With knn the k nearest neighbours of a
given point are found. These neighbours are used to form an overdetermined system by
inserting them into the plane equation ax+ by + cz − d = 0. Solving the system using
the method of pseudo inverses or Singular Value Decomposition yields an estimate for
the normal vector n = [a, b, c] at point p. n has to be normalized in order to get the
orientation’s unit vector en = n

|n|
.

Filtering the point cloud for points having a normal which is similar to eu is done using
the dot product’s definition: ab = cos(∠(a,b)) |a| |b|. Since the eu and en are both
unit vectors one can simply solve for ∠(a,b) by evaluating arccos(ab). An angular
threshold parameter γ for ∠(a,b) is needed to tell which normals are still counted as
pointing up and which are not.

2.2.2 Creating Plane Models

The second step to finding planar surfaces begins with clustering the remaining points
using the basic algorithm from Section 2.1. It is now useful because it is assumed
that the planar points are surrounded by points not belonging to planes in the scene.
These non-planar points have been removed in the last step leaving gaps large enough
to perform Euclidean Clustering. The result are m clusters of plane candidate clouds
that from now on will be examined individually.

For each planar point cluster the corresponding plane model needs to be determined.
An effective way for finding models of geometric primitives like planes inside point
clouds is the Random Sample Consensus (RanSAC) [8] method. The general idea
behind RanSAC is to form a mathematical model of the desired primitive from a
minimal set of random samples in the input data. The consensus step then checks the

martin@martinbertsche.dyndns.org 13

CHAPTER 2. SEGMENTATION ALGORITHMS

quality of the model by computing the sum of distances for all the remaining data to
the model. This process is repeated for a user defined number of times. The models
are then stored together with their respective quality measures. In the end the model
with the lowest sum of distances is selected as the result.

Clearly there is no guarantee for the RanSAC approach to yield an optimal result.
Actually, the chances for an optimal result are close to zero for two reasons. (1) There
has to be a subset of points in the input data that defines the optimal model. (2)
The whole subset has to be selected within one random sample draw. So the user of
the RanSAC method must be satisfied with approximate results or even bogus results,
depending on the level of noise within the data and the number of iterations. However
Fischler et. al. have shown that for sufficiently large data sets and a sufficiently large
number of iterations RanSAC yields close to optimal results.

RanSAC is not only effective but also efficient. The sample step can be considered to
have a runtime complexity of O(1) since the number of sample points is fixed for a given
model. The following consensus step runs in O(n) time, where n is the number of data
points in the set. All points need to be compared with the model. The always optimal
alternative of doing a least squares fit with all sample points has cubic complexity in
n. So in cases where no optimal solution is needed using RanSAC is a good choice for
fitting primitives.

2.2.3 Plane Shapes

Having determined the parameters a, b, c and d of the plane model for each planar
point cluster the next step is to remove some outliers in the clusters. That means
points that are too far away from the model to be counted as part of the plane. For
each cluster an ǫ-margin had to be defined around the corresponding plane model. All
points outside the margin are rejected.

Next, the clusters’ two-dimensional shapes have to be determined. It cannot be guaran-
teed that the shape of the planes will always be convex. An L-shaped table arrangement
for example would result in a concave shape. The PCL’s concave hull class was used
to perform the task of approximating concave polygons for the cluster hulls.

Numerical Issues

By solely applying the concave hull algorithm to the clusters it does not produce a
desirable behaviour. The algorithm has a built-in switching mechanism to choose
between 2-D and 3-D concave hulls. Since the data points are scattered around the
actual plane model the concave hull will always be a three-dimensional one.

In a next step the inliers that are scattered around the plane need to be projected
onto the model. The PCL’s Sample Consensus tool set contains a function to do the

14 Martin Bertsche

2.2. SCENE INTERPRETATION

projection automatically. However, this does not prove to be useful for this task. Due to
numerical issues, not all projected points are coplanar after the projection. Therefore,
the concave hull output is still three-dimensional in most cases. The projection has to
be reimplemented in a numerically stable fashion.

Hardening the projection numerically is done by transforming the plane model along
with the point cluster onto the x-z-plane. In order to do this the plane model has to be
aligned with the x-z-plane by rotating it in such a fashion that its normal vector points
in y-direction. The rotation is determined as quaternion. A rotation axis is needed as
well as a rotation angle. The angle is computed by evaluating α = arccos(eney). The
rotation axis had to be perpendicular to both en and ey and was therefore determined
by er = en× ey. The second step of the transformation is to translate the plane to the
y = 0 level. The distance dy of the plane to the origin needs to be known. Inserting
x0 = [0, dy, 0] into the plane equation and solving for dy yields dy =

d
b
.

Zeroing the y-coordinates of each point results in the proper projection of coplanar
points that can be used for stable computation of the concave hull.

2.2.4 Cropping

The last steps of ScI consist of extracting the spaces that are on top of the planar
surfaces and clustering the respective point clouds to find individual objects.

floor

chair

table
hmax

hmin

Figure 2.4: Hierarchical Cropping of Spaces. The planes for floor, chair and table are
ordered by their heights. The highest plane keeps all its points above it while lower
planes lose their points to intersecting spaces above them.

martin@martinbertsche.dyndns.org 15

CHAPTER 2. SEGMENTATION ALGORITHMS

For cropping the PCL offers a useful function which is able to extract the content of
polygonal prisms from point clouds. The function uses a 2-D polygon which can be
arbitrarily placed and oriented in three-dimensional space. It automatically determines
the direction of the polygon’s surface normal and extrudes the two-dimensional shape
along this axis. The user must define two values hmin and hmax which are the extents
in negative and positive direction along the normal to which the prism is extruded.
The result is a polygonal prism which is used to filter the points in the cloud. All
points lying outside the prism are rejected whereas all points inside the prism are kept.
The extraction needs to be performed on the original point cloud data that has not
undergone any previous filtering steps.

Unfortunately applying the polygonal prism extraction for all polygons does not work
correctly in the case of overlapping surfaces. That means if for example the surface of
the floor is found beneath the surface of a table. Depending on the choice of hmax there
may be spaces where the two polygonal prisms of the floor and the table intersect.
All points lying inside these spaces would therefore be inspected twice in the following
clustering step, increasing computational cost or even duplicating object clusters.

Figure 2.4 shows the solution to that issue in a simplified two-dimensional case. There
the polygons are represented by thick horizontal lines. Their respective spaces are
the shaded rectangles above them. On the left side hmin and hmax are drawn in for
the floor to clarify their meaning. In order to obtain this solution the points being
inliers of the polygonal prisms are treated as sets Ti where i ∈ {1, . . . , n} and n is the
number of surfaces. Given this definition Algorithm 2.2 creates the hierarchical spatial
subdivision for an arbitrary set of planar surfaces.

Algorithm 2.2 Hierarchical Cropping

sort Ti (ascending) by height of corresponding surface
for i = 1→ n do

Ti ← Ti \
⋃n

j=i+1 Tj

end for

As a last step Euclidean Clustering is used in order to get the segments of the individual
objects.

2.3 Spectral Clustering

Spectral Clustering or SC is a graph theoretic approach to the clustering problem
which has been used successfully for both 2-D [9], [1] and 3-D [15] scene segmentation
purposes. Being also a method used in many other domains for exploratory statistical
analysis such as social sciences, psychology and biology its main virtue is that it does
not impose implicit or explicit assumptions on the data that were heavily used for ScI

16 Martin Bertsche

2.3. SPECTRAL CLUSTERING

in Section 2.2. The following Section 2.3.1 will give some mathematical background
needed to understand how and why Spectral Clustering works. Additionally a fast
method for approximating eigenvectors is described which is needed for the algorithm
presented in Section 2.3.2.

2.3.1 Mathematical Basis

The basic goal of a clustering approach is to divide points in a data set into clusters in
which all points have a high degree of similarity and – at the same time – have a high
degree of dissimilarity to points belonging to other clusters. The 3-D scene segmen-
tation problem has a very similar demand given the assumption that the individual
objects in a scene are represented by points inside the sensor data which have similar
properties.

The standard method of representing similarities inside a data set P = {x1, . . . , xn} ⊂
R

m is an adjacency matrix W . This symmetric, positive semi-definite matrix is of
size n× n and connects each data point with all other vertices by an adjacency metric
w : {P, P} → R

+ such thatWij = w(xi, xj). The matrix can also be interpreted as fully
connected, weighted graph G(V,E), where V = P and the weight of Eij = w(xi, xj).
In graph theory clustering can be viewed as cutting G in several pieces in such a way
that V =

⋃p

i=1Ci.

A formalization of cutting graphs is the normalized cut (Ncut) developed by Shi et.
al. [21]. In the following the notation i ∈ A will be used as short hand for {i|vi ∈ A}.
Let di = Σn

j=1wij be the degree of a vertex, defined as the sum of weights of all
connected edges. Furthermore let vol(A) = Σi∈Adi be the volume of A and cut(A,B) =
Σi∈A,j∈Bwij be the sum of weights of the edges connecting A and B, with A ∪ B = V
and A ∩B = ∅.
With cut(A,B) there already exists a formal definition for finding a bipartition of G
by solving argminA,B{cut(A,B)}. However it is obvious that cut(A,B) monotonically
increases with the number of elements in A thus favouring the isolation of single points
in the dataset. According to Shi et. al. segmentation approaches using this standard
cut iteratively have not been very successful. Instead they proposed the normaliza-
tion Ncut(A,B) = cut(A,B)

vol(A)
+ cut(A,B)

vol(B)
. The formulation removes the bias that is seen

for the standard cut. Unfortunately Shi et. al. also proved the problem of finding
argminA,B{Ncut(A,B)} to be NP complete.

Similarity Graphs

There are many ways to define a similarity graph and the corresponding adjacency
matrix. The way which is easiest to implement is a fully connected graph. Obviously
such a graph has n2 edges. Even for not very large n ∼ 105 the corresponding adjacency

martin@martinbertsche.dyndns.org 17

CHAPTER 2. SEGMENTATION ALGORITHMS

matrices become intractable for personal computers. Very often Spectral Clustering
methods are referred to as globalized methods because they take into account all the
points in the dataset whereas methods like k-means or Euclidean Clustering make the
cut decision locally by saying: ”I cannot find any point that is close enough to the
point I’m looking at.” Since in most cases it is impossible to use a fully connected
graph, sparse matrices are created instead.

A sparse matrix can be created by finding the k nearest neighbours of each point
inserting only the similarities between the current point and its neighbours, zeroing
all other entries in the adjacency matrix. This method however will lead to non-
symmetric matrices due to the fact that if point a has a nearest neighbour b, b does not
necessarily have a nearest neighbour a. The matrix must artificially be made symmetric
since no fully connected graph is generated. This can be done by copying the obtained
values into the transposed matrix position. The upside is that the process does not
need to inspect all n2 pairs of points. Knowing that nearest neighbour search can be
done in O(log(n)) this reduces the runtime complexity of finding the adjacencies to
O(n log(n)k).

Another way is to use Gaussian similarity kernels such as s(a, b) = exp(||b−a||2

2σ2). The
properties of this function are very well suited for creating a sparse matrix because the
values it takes for ||b− a|| > 3σ can be approximated by zero. σ is used to define the
size of the neighbourhood that is taken into account. This method however still entails
calculating the adjacencies for all n2 pairs.

Sparse Matrix Datastructures

In addition to the runtime problem there is also the problem of limited space. It is even
more apparent than runtime because sofware requiring more memory than available
will crash instead of running for a very long time. For n = 105 the squared amount of
n2 = 1010 memory locations are needed to store a complete adjacency matrix. However
current personal computers are only capable of storing 1

10
of this amount. Luckily using

sparse matrices most of the entries are zero. This knowledge is used to define data
structures optimized for memory consumption. By only storing the non-zero entries
along with their positions the memory needed is reduced to O(nm) where m is the
number of non-zero values per row.

In most cases memory optimization is taken even further such that contiguous patches
of non-zero values are summarized into dense submatrices occupying certain index
ranges of the actual matrix. This way there is no need to store the indices of each
individual entry.

While there are many software packages offering these kinds of data structures there
are only few that also offer functions that perform efficient calculations with them.
[11] gives a comprehensive summary of recent and deprecated software packages that

18 Martin Bertsche

2.3. SPECTRAL CLUSTERING

actually perform efficiently on sparse matrices with a focus on eigenvalue decomposi-
tion. In the course of this work SLEPc [12] which is based on PETSc [3] was used
to perform the calculations. Although these libraries are written for handling large
matrices in parallel using the Message Passing Interface (MPI), they also offer very
efficient sequential algorithms.

Approximating Ncut

Despite Ncut being proven to be NP complete there is a method also developed in [21]
which is known to give good approximations of an optimal bipartition:

Using the definitions of Section 2.3.1 let D be a diagonal n× n matrix with Dii = di.
The normalized graph Laplacian is defined as L = D− 1

2WD− 1

2 . Solving for the λi of
the eigen system Lx = λx results in n eigenvalues and eigenvectors which have to be
sorted in ascending order of λi. Thresholding the eigenvector of the second smallest
egenvalue λ2 in the form li = Θ(xi) whith Θ being the Heaveside function yields the
desired bipartitioned labelling of the points in point cloud P .

Shi and Malik propose two ways in order to make Ncut usable for data clustering
in general and image or point cloud segmentation in particular. These application
domains demand the method to create a k-partition of the data.The most obvious
way of obtaining a k-partition from a function performing bipartition is to recursively
reapply the function on the resulting clusters until some termination criterion is met.

An alternative way is based on the assumption that additional partitioning information
is encoded in the eigenvectors xi following the one of λ2. Thus for each point pi ∈ P it
is possible to define a q-dimensional descriptor δi = [xi2, . . . , xiq+1] that can be applied
for k-means clustering.

2.3.2 The Nyström Method

As described in Section 2.3.1 the computation of spectral clusters entails solving a
matrix eigenvalue problem of the Laplacian L which is of same size as W . It has been
shown by Pan et. al. [17] that regarding runtime complexity the matrix eigenvalue
problem can be reduced to matrix multiplication. Although considerably fast algo-
rithms exist for large matrices e.g. O(nlog2 7) [22] which outperform näıve approaches
solving for eigenvalues must be considered time intensive operation.

Looking at the way how eigenvectors are used by spectral clustering reveals however
that exact solutions are not needed. For example for the first recursive approach only
the correct sings are of interest making it possible to use approximation methods for
determining the eigenvalues instead of solving the actual problem.

The following derivations are taken from [9]. Some comments have been altered or

martin@martinbertsche.dyndns.org 19

CHAPTER 2. SEGMENTATION ALGORITHMS

added for better understanding. An example for an eigenvalue eigenvector approxima-
tion method is the Nyström extension. Its original purpose is according to Fowlkes et.
al. to find ”numerical approximations to eigenfunction problems”[9, 3. The Nyström
Extension]. What eigen functions are can be seen in the following equation:

b∫

a

W (x, y)φ(y)dy = λφ(x).

Using the quadrature rule the integral is transformed into a sum. The quadrature rule
however only approximates the integral between a and b.

b− a

n

n∑

j=1

W (x, ξj)φ̂(ξj) = λφ̂(x) (2.1)

Therefore, φ̂(x) is the approximation of φ(x) – the eigenfunction of W . In order to
solve the equation x also needs to be discretized with the ξ1, . . . , ξn which yields a
system of equations.

(b− a)AΦ̂ = nΦ̂Λ (2.2)

Please note that Aij = W (ξi, ξj) and Φ̂ =
[

φ̂1, . . . , φ̂n

]

are the n eigenvectors of A with

corresponding eigenvalues λ1, . . . , λn. Solving the eigen problem allows to reinsert the
λi and φj into Equation 2.1 and solve it for φ̂(x). This yields the Nyström Extension:

φ̂i(x) =
b− a

nλi

n∑

j=1

W (x, ξj)φ̂i(ξj) (2.3)

What happened so far? Two discretization steps are used to transform the integral
eigenvalue problem into a system of linear equations. By sampling the function W
approximate samples of the eigenvectors and eigenvalues are created. The reinsertion
of these results into Equation 2.1 yields Equation 2.3 which can be used to extend the
eigenfunction samples found by solving Equation 2.2 to any x.

In order to transfer the Nyström Extension to the Ncut problem the affinity matrix W
is interpreted as discretized version of the function W (x, y). The process of sampling
the integral is imitated by taking a random sample of the input data S ⊂ P to generate
a dense sample affinity matrix A containing the affinities of all p ∈ S. The equivalent
of W (x, ξj) is obtained by creating a matrix B which contains all affinities between the
points p and q ∈ S̄ = P \ S. As a consequence W (ξi, x) can be seen as B⊤.

As it is done in Equation 2.2 A is decomposed into A = UΛU⊤. Using the decomposi-
tion the left hand side of Equation 2.3 can also be recreated by B⊤UΛ−1 which allows
to determine approximate eigenvectors for all unsampled parts of W . For better un-

20 Martin Bertsche

2.3. SPECTRAL CLUSTERING

derstanding W can be rewritten such that the p ∈ S occupy the lowest indices. Please
note that C in this matrix relates to all unknown affinities.

W =

[
A B
B⊤ C

]

(2.4)

Extending all Eigenvectors it is possible to define an appoximate eigenvector matrix of
W .

Ū =

[
U

B⊤UΛ−1

]

(2.5)

Using Ū one can again approximate W with Ŵ = ŪΛŪ⊤. Inserting the definition of
Ū from Equation 2.5 results after some expansion steps in

Ŵ =

[
A B
B⊤ B⊤A−1B

]

. (2.6)

So it can be said that the Nyström Extension approximates the unknown C with
B⊤A−1B.

The eigenvectors in Ū however are not orthogonal. Fowlkes et. al. propose a method
on how to obtain othogonal eigenvectors of Ŵ if A is positive definite. They define a
matrix S = A + A− 1

2BB⊤A− 1

2 with its eigen decomposition being S = USΛSU
⊤
S . For

S they prove in [9, Appendix A] that

V =

[
A
B⊤

]

A− 1

2USΛ
− 1

2

S (2.7)

contains the orthogonal eigenvectors of Ŵ = V ΛsV
⊤.

For the Normalized Cut there is still work to do. In order to create the graph Laplacian
the row sums Ŵ1 of Ŵ are needed. The sums can be calculated without evaluating the
very large matrix C, because C1 = B⊤A−1B1 = B⊤A−1bc, with bc being the column

Algorithm 2.3 Nyström Spectral Clustering

Construct A from a random sample S ⊂ P
D ← diag(Ŵ1) ⊲ remember C1 = B⊤A−1bc

Ā← D− 1

2AD− 1

2 , B̄ ← D− 1

2BD− 1

2 ⊲ normalize A and B
S ← Ā+ Ā− 1

2 B̄B̄⊤Ā− 1

2 ⊲ assure orthogonal eigenvectors
[US,ΛS]← EVD(S) ⊲ eigenvalue eigenvector decomposition

V ←
[

Ā
B̄⊤

]

Ā− 1

2USΛ
− 1

2

S ⊲ approximate k eigenvectors of Ŵ

Normalize row vectors of V to magnitude 1 ⊲ improve k-means performance
Perform k-means using the row vectors of V

martin@martinbertsche.dyndns.org 21

CHAPTER 2. SEGMENTATION ALGORITHMS

Figure 2.5: Example of spectral clustering segmenting a scene.

sum of B. In order to create L = D− 1

2 ŴD− 1

2 the Blocks A and B must change to

Āij =
Aij

√

d̂id̂j

, i, j ∈ {1, . . . , n}

B̄ij =
Bij

√

d̂id̂j+m

, i ∈ {1, . . . , n}, j ∈ {1, . . . , m}

The algorithm stated in [6, p. 10] briefly summarizes all the necessary steps to perform
Spectral Clustering using the Nyström method. It is rewritten here in Algorithm 2.3
for consistency of variable names. See Figure ?? for an example of a spectral clustering
result.

2.4 Expectations

In this section the selection of algorithms is explained along with the criteria used
in the process. Applying the theory from Sections 2.1, 2.2 and 2.3 expectations are
formulated for the algorithms with a focus on conditions upon which two or more
algorithms complement each other.

In light of the goal to prepare a highly versatile set of segmentation algorithms this
selection of methods is a disputable choice of course. However, there exists no applicable
taxonomy of segmentation approaches which would allow to select the correct number
and types of algorithms to guarantee a desired degree of versatility. Therefore, the
main guideline for selecting the algorithms is a high degree of heterogeneity of the
methods. This particular course of action is based on the assumption that segmentation
approaches processing the input data in a similar fashion will show strongly related
performance profiles and thus do not increase the versatility of the algorithm set.

22 Martin Bertsche

2.4. EXPECTATIONS

Despite the lack of a taxonomy, paper research shows that all segmentation algorithms
are grouped around central more general processing approaches. Many of today’s 3D
segmentation methods are based on existing processing algorithms such as cluster-
ing approaches that have been developed long before they became interesting for this
particular task. Specialization is achieved by extending the general approach or by
refining its result in subsequent processing steps. Therefore, the first criterion for se-
lecting a segmentation approach according to the heterogeneity guideline is to only
choose algorithms originating from different general approaches.

In addition to the general method further criteria are applied to differentiate the al-
gorithms. The next important criterion is the type of data being processed by the
algorithm. Since the sensor used for this work is capable of providing color informa-
tion for each point in addition to the plain Cartesian coordinates it is natural to prefer
algorithms bringing this information to use. The expected run time of the algorithm
is also a major influence on the selection process as well as the estimated time needed
for implementation.

2.4.1 Scene Interpretation

ScI will serve as a reference algorithm for comparison with the other algorithms pre-
sented in this chapter. It is the latest evolution of a basic approach which is the one
most commonly used in Service Robotics. See [23], [20] or [10] for a selection appli-
cations. Object manipulation and thus object recognition are very important tasks in
this field of research. Therefore, a wide variety of segmentation approaches are now
available. They are based on the assumption that manipulable objects are located on
planar surfaces such as tables, desks and counters. The assumption is true for many
environments service robots are expected to work in.

In contrast to the other segmentation methods discussed in this chapter ScI is a local
segmentation approach. Therefore, only a selection of points which is deemed worth-
while is labeled in the process while the rest is dismissed as being the background.
The selection is based on the detection of planar surfaces in the scene. Thus every
algorithm performs a planar surface detection using Sample Consensus techniques.

While such algorithms perform very well in the cases where planar surfaces are de-
tectable they are very certain to fail when this is not the case. A major weak point
of planar segmentation is data reduction achieved by down-sampling of the data. In
order for planar segmentation to run with high frame rates the down-sampling is a
necessary step as long as using GPU implementations is not an option. Reducing the
data however becomes an increasingly worse problem as more and more objects popu-
late the planar surfaces. The objects take away necessary information from the Sample
Consensus step by occluding the surface points behind them. Given the normal based
filtering done in ScI no pollution of the data by points belonging to the objects is to be

martin@martinbertsche.dyndns.org 23

CHAPTER 2. SEGMENTATION ALGORITHMS

expected. However, the decreasing number of surface points seen by the sensor forces
the user to lower the threshold on the number of points needed to accept a planar
surface. This in turn leads to the acceptance of even very small surface patches which
are likely to be the result of sensor noise.

A strongly related effect is that planar surfaces are cut into two or more parts by the
occlusion of the objects on top. The resulting planar surfaces are correctly detected
however they do not support the objects anymore. Only the gaps between the objects
are passed to the hierarchical clustering step which is therefore unable to find the object
clusters.

2.4.2 Color-based Segmentation

Color-based Segmentation is the most obvious example for an extension of a pre-existing
clustering approach. It introduces an additional colorimetric similarity criterion to Eu-
clidean Clustering. Of course there are further extensions to the Euclidean Clustering
approach such as the one proposed by Rabbani et. al. [18] which adds a surface
smoothness criterion.

The main reason for choosing Euclidean Clustering based algorithms is their simplicity.
They are quickly understood and therefore easy to implement compared to the other
algorithms presented in this Chapter. As a result the effects of the algorithm’s param-
eters can be well anticipated. Color-based Segmentation is chosen over the approach
of Rabbani et al. due to the processing of color information. The results presented
by Zhana et al. are also more convincing since they show that for colored objects the
problem of adjacent or connected objects being merged was largely reduced by their
approach whereas the segmentation examples of Rabbani et al. could not prove that
the smoothness constraint is able to do the same.

The most obvious failure condition for CbS is the case where adjacent objects have
similar colors near the object borders. For such cases the gap assumed between objects
due to the use of XYZRGB space does not exist. This inevitably leads to under-
segmentation.

Since all data is being sampled down to a resolution of 1 cm3 – which is also done for
the color information by replacing the points inside the 1 cm3 voxel with a point having
the mean color – for objects with textures consisting of many small batches of different
colors a homogenizing effect can be expected. This leads to a low level of color based
over-segmentation of objects. The same is true for objects having a predominant color
in their textures or only soft color transitions. Objects which are difficult to segment
with CbS will have large batches of different colors that are separated by sharp color
transitions. These textures generate unwanted gaps in XYZRGB space leading to
over-segmentation.

24 Martin Bertsche

2.4. EXPECTATIONS

Figure 2.6: On the left:Example of Spectral Clustering dealing with proximity. On the
right: Result of Euclidean Clustering on the same dataset. Source [16]

The way in which Color-based Segmentation and Scene Interpretation are complemen-
tary is now evident. The cases for which planar surface detection works insufficiently
due to a scene cluttered with objects, CbS is expected to outperform ScI as long as
the objects in the scene expose favorable textures. Conversely for scenes with objects
having ill-conditioned textures ScI is anticipated to outperform CbS as long as the
planar surfaces beneath the objects are detected well enough.

2.4.3 Spectral Clustering

Spectral Clustering is a generalized approach in itself. Multiple applications of the
basic approach are already mentioned in Section 2.3. Two methods of application are
explained in order to perform multi-cluster segmentation. The Nyström Extension
being an efficient method for approximating eigenvectors shows that specialization is
not always done in order to improve segmentation results on given scenes, but also to
decrease runtime.

Spectral Clustering and Euclidean Clustering are related approaches. The implemen-
tation of Spectral Clustering in this work uses the same input data as Color-based
Segmentation and therefore also makes use of color information. Their names imply
that they both perform a type of clustering of the input data. However, the fashion in
which the clusters are obtained are not related at all. Therefore the heterogeneity cri-
terion is fulfilled. The paper research brought to light a variety of interesting examples
exposing the capabilities of SpC as can be seen in Figure 2.6. These examples suggest
that the shortcomings of CbS can be compensated while preserving the advantages
that CbS has over Scene Interpretation.

SpC’s benefits of course come at a cost. Despite the use of the Nyström Extension it
is expected to be slow compared to Scene Interpretation or Color-based Segmentation.
This is owed to the fact that although the Matrix A is relatively small matrix B

martin@martinbertsche.dyndns.org 25

CHAPTER 2. SEGMENTATION ALGORITHMS

still is very large. Many matrix multiplications and multiple eigen-solving steps are
performed.

However, setting the speed criterion aside it, seems as if Spectral Clustering is capable
of solving a superset of the problems being solvable using CbS. While it is essentially
true that Euclidean Clustering based algorithms are outperformed by Spectral Clus-
tering there remain the problems of approximate solutions and non-determinism. As
discussed in Section 2.3 the method proposed by Shi et al. only gives approximate
results. The same is true for the Nyström Extension which additionally relies on ran-
dom sampling. So when trying to solve the Ncuts problem what is actually done is the
non-deterministic approximation of an approximation of the real solution. Therefore,
in the sense of repeatability, it is not expected to be as reliable as ScI or CbS and thus
only applicable if neither ScI nor CbS are expected to successfully segment the scene.

26 Martin Bertsche

Chapter 3

Segmentation Quality

Measuring segmentation quality is a cornerstone of this work. First it is necessary
to understand how segmentation quality is measured in the 2D world and it will be
shown further that such methods are also applicable for 3D segmentation. However,
these methods are very time consuming and require a large human workforce since
basic information is collected from human subjects. Therefore an alternative method
for segmentation quality measurement is presented which matches the scope of this
work.

Given the goal to train a classifier that is supposed to choose the best segmentation
algorithm for a given scene, correctly labelled data is needed. The labels identify the
best parameter set for a given scene.

3.1 The 2D World

The most famous effort to measure 2D segmentation algorithm performance is the
Berkeley Segmentation Dataset and Benchmark [14]. It is a 1, 000 image subset of
the Corel image database which is widely used by the computer vision community. In
total the dataset contains eight man made segmentations per image. Four of them are
segmented from grayscale and the other half is segmented from color images. Special
hardware, special software and a simple set of rules is used to simplify and accelerate
the process for the subjects.

As anticipated by Martin et. al. human segmentations differ between the subjects. The
test persons are given plenty of scope to choose the granularity of their segmentation
which is only bounded by the rule that the segments should have approximately equal
importance. Proof of a high degree of consistency between the subjects is needed in
order to verify that these segmentations are valid. A metric capable of indicating
consistency is therefore defined. The Berkeley Segmentation Benchmark uses a local

27

CHAPTER 3. SEGMENTATION QUALITY

non-symmetric error measure.

When comparing two segmentations S1 and S2 for each pixel pi the containing region
(or segment) R(S, p) is determined. The error is then defined as

E(S1, S2, pi) =
|R(S1, pi) \R(S2, pi)|

|R(S1, pi)|
.

Two metrics are derived from the error measure that consider all points in an image.
The Global Consistency Error (GCE) and the Local Consistency Error (LCE). Both
form a mean of E. The only difference between them is that GCE minimizes between
the Error directions E(S1, S2, pi) and E(S2, S1, pi) gobally and LCE does so locally on
a per pixel basis.

Martin et. al. are able to show that for human segmentations of the same image these
metrics are very low whereas they become close to 1 whenever the segmentations of
two different images are compared. This naturally proves the validity of LCE and GCE
and shows the consistency of human segmentations at the same time.

Unfortunately manual segmentation of 3D data is nearly impossible due to the lack of
visualization and selection methods which would allow the efficient definition of volumes
in point clouds. However manual annotation methods for 2D images can easily be used
in the 3D world as well.

Today’s sensors like the Kinect use a two-dimensional depth map in order to compute
the point cloud with a set of calibration parameters. For such sensors it is trivial to
transform back and forth between 3D and 2D data representations. Being able to
reduce 3D segmentation to 2D segmentation, the annotation techniques used for the
Berkeley Segmentation Dataset are also applicable for this work. Unfortunately the
hardware and the software used in the process of creating the dataset are custom made.
Their specifications have not been published.

3.2 Recognition Quality

Since basic information cannot be collected from human experts it is not possible to
directly measure the segmentation performance. The idea for an alternative approach
is sparked by Martin et al. who state in [14]:

”It is considerably easier to quantify the performance of recognition algo-

rithms than segmentation algorithms”.

The statement is verified by the fact that recognition techniques rely on the minimiza-
tion of some quality measure. It is safe to say that the definition of a performance
measure quantifying recognition performance is inherent to object recognition. So the

28 Martin Bertsche

3.2. RECOGNITION QUALITY

question is: How can the measurement of object recognition quality help in determining
the performance of a segmentation algorithm and what are the necessary conditions?

Obviously, a strong coupling between recognition quality and segmentation perfor-
mance is vital to such an approach. Global description techniques – i.e. techniques
that describe complete object clusters in contrast to describing single points – as for
example the Viewpoint Feature Historam (VFH) [19] or Bounding Box expose such a
strong coupling.

Taking Bounding Box as example, the direct relation between recognition quality and
segmentation quality can be seen immediately: In the case of oversegmentation bound-
ing boxes are smaller than the model bounding box whereas in the case of undersegmen-
tation the bounding boxes are too big. Both cases lead to increasing error measures in
the recognition process or even to false recognitions when segmentation keeps becoming
worse.

There are also object recognition methods that do not explicitly rely on well segmented
input data or which do not need segmentation at all. Such methods are for example
based on registration in combination with a keypoint extraction approach. For these
methods recognition runtime could be a performance indicator. A major effect of
segmentation is data reduction resulting in faster execution of registration based algo-
rithms. However the relation between the runtime of such algorithms and segmentation
performance was not further investigated because registration runtime also heavily de-
pends on the dataset itself. A low signal-to-noise-ratio is expected making it nearly
impossible to seperate ill-conditioned input data and bad segmentation.

real
bounding box

bounding box
as seen from
the sensor

sensor orientation

Figure 3.1: Bounding Box yielding bad recognition results despite perfect segmentation.

martin@martinbertsche.dyndns.org 29

CHAPTER 3. SEGMENTATION QUALITY

This reduces the list of recognition approaches to the ones using global description of
object clusters. Bounding Box and Viewpoint Feature Histogram are the only global
description methods available without further implementation overhead. Since no work
package has been allotted for the implementation of recognition algorithms one of the
two has to be chosen.

Reason for disqualifying Bounding Box is given by the fact that an object’s orientation
relative to the sensor is not considered during training. As shown in Figure 3.1 there
are view points from which it is impossible to estimate the correct bounding box of
an object. This happens when the front facing the sensor covers parts of the object
from the sensor’s view that are needed to estimate it’s bounding box. VFH in contrast
does not show this viewpoint specific behaviour because it does not need information
about the objects real size. The VFH description technique allows to arbitrarily choose
object and sensor positions when testing segmentation performance. Therefore, VFH
is used to determine segmentation performance in this work.

3.2.1 A probabilistic quality measure for VFH

In this section it is discussed how the VFH quality measure is defined and why it
cannot be used as is to quantify segmentation performance. Bayesian reasoning is
used to transform VFH’s quality measure into a form that will allow for comparison
between different view angles. It is shown how this method can be applied to compute
an object recognition confidence value using a normalization criterion. The object
confidence measure however does not prove to be a as useful for measuring segmentation
performance as an intermediate result obtained in the process.

The Viewpoint Feature Histogram is a vector containing 308 floating point values.
See Figure 3.2 for an example. Given an input point cluster C = {c1, . . . , cm}, for
each point ci a surface normal is estimated using a k-neighbourhood of points. For
each normal ni the deviation angles αij , φij and θij are computed which rotate the
normal to a k-neighbourhood of normals nj . The results are then combined with the
viewpoint direction vp − ci, vp being the sensor position. The values of α, φ and θ are
then discretized into equally sized value ranges. Binning the rotation angles of each
point given the value ranges results in the Viewpoint Feature Histogram. Rusu et.
al. prove empirically that VFH has a high discriminative power making it possible to
effectively discern up to 60 objects with 90× 6 = 540 view angles each.

For recognition an object model containing a sufficiently large number of descriptors of
different view angles is needed. Recognition is performed by generating a descriptor of
a new point cloud and searching for its nearest neighbour within all models that have
been trained. Having found the nearest neighbouring descriptor not only the object
itself is known but also its orientation relative to the sensor. The recognition perfor-
mance measure inherent to VFH recognition is a distance measure for two Viewpoint

30 Martin Bertsche

3.2. RECOGNITION QUALITY

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

20

40

60

VFH Planar Surface Top View

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

10

20

VFH Planar Surface Viewed from an Angle

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

5

10

15

VFH Koffee Maker

Figure 3.2: Viewpoint Feature Histograms of multiple objects and view points.

Feature Histograms. Exposing the highest performance in finding similarities between
histograms the Chi Squared Distance is chosen as proposed by Rusu et. al..

Unfortunately, the distance does not result in comparable values for different view
angles. The value range is different of each descriptor. Distances also vary slightly
from scan to scan due to sensor noise. So the benefit of VFH described in Section
3.2 – which is that objects can be arbitrarily placed in a scene – seems to vanish.
However due to VFH’s discriminative power a high certainty of finding the correct
model descriptor within the k nearest matches1 remains. For Bounding Box this is not
the case.

The task is to transform the distance measures in a fashion that makes them comparable
although they result from scans of different view points. A probabilistic approach is
chosen because probabilities are perfectly comparable. The value of interest is p(D =
δ|E = ǫ) – the probability of the descriptor match δ actually representing the scanned
object and view point under the condition of getting a Chi Squared Distance ǫ. ǫ is a

1Where k≪ n is much smaller than the total number of descriptors in all models.

martin@martinbertsche.dyndns.org 31

CHAPTER 3. SEGMENTATION QUALITY

continuous random variable. Therefore, it is impossible or at least tedious to gather
the basic information needed to directly compute p(D = δ|E = ǫ). Bayes’ rule is used
instead:

p(D = δ|E = ǫ) =
ppri(E = ǫ|D = δ)ppri(D = δ)

ppri(E = ǫ)
. (3.1)

The prior probabilities ppri(E = ǫ|D = δ), ppri(D = δ) and ppri(E = ǫ) are needed
to compute the desired value. The method used in order to obtain these values is
discussed in Section 3.2.2. By applying the same reasoning step as in 3.1 to each of the
k best matches in the database, allows to determine the most probable match given
its error. So instead of using the best match, considering distance ǫ, as result the most
probable one is taken.

Being a result of the matching process, ǫ is known during recognition. Therefore,
p(E = ǫ) = 1 is valid permitting use marginalization in order to solve for p(D = δ).

p(D = δ) = p(D = δ|E = ǫ)p(E = ǫ)
︸ ︷︷ ︸

=p(D=δ|E=ǫ)

+ p(D = δ|E 6= ǫ)p(E 6= ǫ)
︸ ︷︷ ︸

=0

(3.2)

Further, assuming that k has been chosen large enough such that the probability of the
correct descriptor being in the set of best matches is approximately 1, one can normalize
the probabilities with the criterion in Equation 3.3. Please note that this summation
neglects all undoubtedly existing dependencies of the form p(D = δi|D = δj), where
i 6= j.

k∑

i=1

p(D = δi) = 1
normalization⇒ pn(D = δi) =

p(D = δi)
k∑

i=1

p(D = δi)

(3.3)

For the normalization in Equation 3.3 the assumption is made that the set of k best
matches is certain to contain the correct match. In order to validate the assumption the
desired level of certainty has to be specified. However, a trade-off has to made between
the desired certainty and the time needed for validation. For this work a certainty of
0.999 is chosen since it is possible to be verified in about 16 hours. Validation entails
generating 1000 test descriptors from sensor data which takes about 24 seconds per
descriptor. This has to be repeated for all descriptors in the database. Applying the
process to several k values shows that a k of 20 robustly delivers the desired certainty.

In order to obtain the object confidence value p(O = ω) the marginalization in Equation
3.4 is used. Herein δ represents a descriptor of the model for object ω.

p(O = ω) = p(O = ω|D = δ)p(D = δ) + p(O = ω|D 6= δ)p(D 6= δ) (3.4)

The posterior probability pn(D = δ) is inserted for p(D = δ). p(O = ω|D = δ)

32 Martin Bertsche

3.2. RECOGNITION QUALITY

is approximately 1. No two descriptors in the database are equal. VFH does not
qualify as a highly discriminative descriptor otherwise. With nd being the number of
all descriptors in all models and ndω being the number of descriptors in the model for
object ω, Equation 3.4 can be rewritten to:

p(O = ω) = pn(D = δ) +
ndω − 1

nd

(1− pn(D = δ)) (3.5)

Equation 3.3 is needed to conclusively determine a confidence value for recognizing an
object. However, there are also disadvantages related to the normalization step which
will be discussed in Section 3.2.3.

3.2.2 Gathering Prior Knowledge

As seen in Equation 3.1 prior knowledge is needed to perform probabilistic reasoning
with the VFH error measure. This knowledge has to be obtained during training by
examining the error behaviour for each descriptor in the database. The current training
process needs to be altered slightly in order to generate recognition performance data
on-the-fly after the model descriptor is generated. Every model descriptor is supposed
to represent a small range of object orientations relative to the sensor. Therefore,
the object is rotated within that range. Further descriptors are generated while ro-

30 42 54 66 78 90 102 114 126 138
0

2

4

6

8

10

ǫ

ab
so
lu
te

fr
eq
u
en
cy

0

1

2

3

·10−2

p
ro
b
ab

il
it
y
d
en
si
ty

30 42 54 66 78 90 102 114 126 138
0

2

4

6

8

ǫ

ab
so
lu
te

fr
eq
u
en
cy

0

0.5

1

1.5

2

·10−2

p
ro
b
ab

il
it
y
d
en
si
ty

30 42 54 66 78 90 102 114 126 138
0

2

4

6

8

10

12

ǫ

ab
so
lu
te

fr
eq
u
en
cy

0

2

4

·10−2

p
ro
b
ab

il
it
y
d
en
si
ty

30 42 54 66 78 90 102 114 126 138
0

2

4

6

8

10

12

ǫ

ab
so
lu
te

fr
eq
u
en
cy

0

1

2

3

4

5
·10−2

p
ro
b
ab

il
it
y
d
en
si
ty

30 42 54 66 78 90 102 114 126 138
0

2

4

6

8

10

12

ǫ

ab
so
lu
te

fr
eq
u
en
cy

0

1

2

3

4

·10−2

p
ro
b
ab

il
it
y
d
en
si
ty

30 42 54 66 78 90 102 114 126 138
0

2

4

6

ǫ

ab
so
lu
te

fr
eq
u
en
cy

0

0.5

1

1.5

2

2.5
·10−2

p
ro
b
ab

il
it
y
d
en
si
ty

Figure 3.3: Error histograms indicating a normally distributed error. Each histogram
represents the error behaviour of a single descriptor. The abscissa denotes the error ǫ
in a range between 30 and 150. Assuming a normal distribution, the ordinate on the
left represents the probability density value for an error, whereas the ordinate on the
right stands for the absolute frequency of errors within sub-ranges of size 12.

martin@martinbertsche.dyndns.org 33

CHAPTER 3. SEGMENTATION QUALITY

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
0

5 · 10−2

0.1

0.15

0.2 ǫ0

ǫ0 − τ ǫ0 + τ

t

Φ
0
,2
(t
)

Figure 3.4: Calculating the probability of ǫ0 given that descriptor δ0 has been matched.

tating and the Chi Squared Distance to the model descriptor is computed for these
orientations.

The histograms shown in Figure 3.3 are indicative for a normally distributed error. For
that reason the errors’ means and standard deviations are used to describe recognition
performance on a per descriptor basis. Given a matched descriptor δ0 and the error of
the match ǫ0 it is now possible to also extract the error mean µ0 and standard deviation
σ0 for recognizing the descriptor. The probability of having the match error given the
descriptor δ0 is then given by:

p(E = ǫ0|D = δ0) =

ǫ0+τ∫

ǫ0−τ

Φµ0,σ0
(t)dt, (3.6)

as plotted in Figure 3.5, where τ > 0 denotes a small range of values around ǫ. The τ
range is needed here since the probability of getting an instance of a continuous random
variable is zero. p(E = ǫ) can be determined in the same fashion. For µ and σ the
combined mean and standard deviation of the recognition error is determined over all
descriptors in all models.

However it is possible to remove τ from further considerations since it is not p(E =
ǫ0|D = δ0) that we actually need. For clarification Equation 3.1 is rewritten:

p(D = δ|E = ǫ) =

∫ ǫ0+τ

ǫ0−τ
Φµ0,σ0

(t)dt
∫ ǫ0+τ

ǫ0−τ
Φµ,σ(t)dt

ppri(D = δ) (3.7)

The ±τ range is an approximation of the actual probability. While the limit of τ →
0 vanishes for

∫ ǫ0+τ

ǫ0−τ
Φµ0,σ0

(t)dt and
∫ ǫ0+τ

ǫ0−τ
Φµ,σ(t)dt it does not for the Quotient in

Equation 3.7. It resolves to
Φµ0,σ0

(ǫ0)

Φµ,σ(ǫ0)
. With the prior probability of matching descriptor

δ0, which is ppri(D = δ) = 1
nd
, where nd is the total number of descriptors in the

34 Martin Bertsche

3.2. RECOGNITION QUALITY

20 30 40 50 60 70 80
0

2 · 10−2

4 · 10−2

6 · 10−2
insufficient sufficient insufficient

ǫ

Φµ0,σ0
(ǫ)

Φµ,σ(ǫ)

Figure 3.5: Deciding between sufficient and insufficient matches. The points where the
two density functions intersect delimit the error range for sufficient matches.

database Equation 3.1 is simplified to:

p(D = δ|E = ǫ) =
Φµ0,σ0

(ǫ0)

Φµ,σ(ǫ0)

1

nd

. (3.8)

3.2.3 Normalization Issues

The normalization which has been formulated in Equation 3.3 unfortunately has un-
desired effects. The intuition leading to the normalization is that in the set of k best
matches there is only one descriptor δ0 which has a high probability of being the cor-
rect match. All other descriptors are assumed to have considerably lower probabilities
such that p(D = δ0) is the main contribution to the sum. The contributions of all
descriptors which are not in the set of k best matches are considered negligibly low.

In the case of over-segmentation parts of the information needed to create a descriptor
similar to the one in the database are unavailable. For under-segmentation additional
information is provided also alienating the generated descriptor from its counter part
in the database. Due to VFH’s discriminative power the assumptions made above
still hold true. The most probable neighbouring descriptor still contributes the major
share to the sum of probabilities. The complete sum however is very small, while the
normalized probability of the most probable match is heavily amplified. In fact the
normalized probability only contains information about how good the best match is
compared to the other k − 1 matches. Information about the absolute quality of the
match which is encoded in p(D = δ|E = ǫ) is lost. Therefore p(D = δ|E = ǫ) is used
to quantify segmentation quality instead of p(D = δ|E = ǫ).

There is also a case for which these assumptions do not hold true. In the case of
viewing an unknown object the assumption

∑k
i=1 p(D = δi) = 1 is falsified. The correct

descriptor cannot be found in the database because it has not yet been trained. So
there must be a lower limit to the match probability in order to reject bad matches.

martin@martinbertsche.dyndns.org 35

CHAPTER 3. SEGMENTATION QUALITY

In order to solve the issue it must be possible to discern true positive recognitions of
varying quality from false positive recognitions. For this work an intuitive criterion was
chosen. In Equation 3.8 the prior probability of matching descriptor δ0 is set to 1

nd
.

This value is multiplied by a Quotient Q =
Φµ0,σ0

(ǫ0)

Φµ,σ(ǫ0)
. Therefore, the probability of a

correct match is lower than or equal to the prior probability as long as Q ∈ [0..1). Such
matches are interpreted as insufficient since only negative confidence can be gained from
them. Insufficient matches, where Φµ0,σ0

(ǫ0) < Φµ,σ(ǫ0) are rejected during recognition
which effectively avoids false positive recognitions for unknown and also known objects.

3.3 A Segmentation Quality Metric Based on Ob-

ject Recognition

In this section the process of obtaining segmentation quality measurements from object
recognition results is described and a mathematical definition for a segmentation quality
metric is proposed.

This work requires segmentation quality measurement to be feasible for a single person.
Therefore, man-made annotations of test scenes must be kept as scarce as possible.
Since object recognition is the basis for this approach it the simplest method to only
annotate the objects contained within the scene. For this work this method is slightly
extended by defining that the order in which the objects are annotated is also the order
how the objects are positioned in the scene from left to right from the sensor’s point
of view. This extension allows minimizing the effects of false positive identifications
of known objects while introducing almost no further annotation overhead. On the
implementation side a small overhead is to be expected, since the recognition output
also has to be ordered from left to right.

A few limitations have to be made with respect to the position of the objects. Of
course all objects must be inside the field of view of the sensor. Additionally there is
a further limitation that is imposed by the training. During training for this work the
objects are scanned from six different elevations resulting in view angles in the range
between 20 and 45 degrees. It has to be expected that recognition performance will
severely drop when positions are chosen such that they are not within that view angle
range.

Deteriorating recognition results are to be expected as well for increasing distances to
the object. During training the sample resolution is artificially reduced by a down-
sampling step to one point per cubic centimeter. For areas in the scan where this
resolution is surpassed all points within a 1cm3 cube are replaced by their center of
gravity. Therefore, the down-sampling process smooths the data and removes noise.
Due to the perspective projection inherent to pattern projection sensors, sample res-
olution decreases with increasing distance to the sampled object. Subsequently there

36 Martin Bertsche

3.3. AN OR BASED QUALITY METRIC

is a distance beyond which sample resolution is lower than the training resolution.
Beginning with this distance there is less information available to compute the de-
scriptor than there was during training which leads to increasing differences in object
description.

It is tempting to use the distance of equal resolution between training and recognition
as maximum distance for recognition. It is also easily computed from the optics’s
focal length, sensor size and sensor resolution. However, the true maximum distance
permitting reliable recognition is lower: For increasing distances the down-sampling,
which is also done for recognition, uses less points to calculate the center of gravity.
The result is therefore more susceptible to noise. At some point only the raw input
data is used because the point distance is larger than the down-sampling grid. As
the smoothing effect of down-sampling diminishes with increasing distance, the noise
amplitude of the sensor increases. These effects however have not been thoroughly
investigated. Instead the absolute maximum distance for recognition of 3.2 meters has
been determined experimentally This is the maximum distance for which all objects
trained are recognized in more than 50% of the cases while in the rest of the cases there
were no false positives.

Given these restrictions scenes are constructed which contain the trained objects. These
scenes are used to compare the performances of two or more segmentation algorithms
as well as for multiple parametrizations of the same segmentation algorithm. The score

S of an algorithm for a scene is computed by summing up the quotients Q =
Φµj ,σj

(ǫj)

Φµ,σ(ǫ0)
,

with j = 1, . . . , m where m is the number of correctly recognized objects. The reason
why p(D = δj |E = ǫj) is not used is that the difference between the two values is
only a constant factor 1

nd
. Given the rejection criterion from Section 3.2.3 each Q is

normalized to the Interval [0 . . . 1]. Therefore, the maximum score of an algorithm is
bounded by m.

S =
m∑

j=1

Qj (3.9)

martin@martinbertsche.dyndns.org 37

CHAPTER 3. SEGMENTATION QUALITY

38 Martin Bertsche

Chapter 4

Optimization and Analysis

4.1 Scene Selection

In preparation of parameter optimization and algorithm analysis scenes are chosen
according to the anticipated strengths and weaknesses of the available algorithms dis-
cussed in Section 2.4. The scenes are mostly taken from an artificial household envi-
ronment that has been constructed in the lab. In addition the scenes are annotated ap-
plying the scheme proposed in Section 3.3. For this work 36 scenes have been recorded
using 100 scans each. The scenes are subdivided into ten groups. Within each group
the actual setting stays the same while the objects in the scene are changing locations
or are replaced by other objects. These variations are introduced to avoid over-fitting
for special objects or object locations when fine tuning the parameters using a brute
force method. For the following discussion the ten groups are subdivided into four
classes which relate to the algorithms’ anticipated performance profiles.

The preparation also entailed object training as described in detail in Appendix B.
The object database contains five objects. Please note that in the following the objects
are referred to by their database names as shown in Table 4.1. For this work multiple
instances of the same object can occur in a scene. Since the object recognition approach

Object Database Name

coffee maker KAFFEEMASCHINE

coffee pot KAFFEEKANNE

chips can PRINGLES

ice tea carton PFANNER

box of chocolates CHOCLAIT-CHIPS

Table 4.1: Mapping between database names and obejects.

39

CHAPTER 4. OPTIMIZATION AND ANALYSIS

is shape based there is no way of differentiating different objects of the same shape.
For example an ice tea carton will be referred to as PFANNER without discrimination
although one carton may be peach flavoured and the other lemon flavoured.

4.1.1 Tabletop Settings

Since planar segmentation techniques like Scene Interpretation are the most widely used
approaches in Service Robotics ScI is the reference algorithm and represents the Status
Quo of what is currently the standard segmentation capability. Tabletop settings are
the type of scene for which these algorithms are optimized. Therefore, they are the
reference scenes which expose the strengths of the standard approach.

Considering the scenes depicted in Figure 4.1: Please note, that these images have
been taken taken from a 3D point cloud viewer where the points have been assigned
colors as seen by the RGB-Camera. The four scenes on the left, which are arranged on
a kitchen table, are the best case scenario for ScI. Large portions of the table surface
are seen by the sensor. All visible parts are connected. This ensures that the planar
segmentation is able to detect the complete table surface and therefore, all objects it
supports. Another benefit of the scene is the high elevation angle of the sensor which
results in less occlusion behind the objects and also more sample points per area unit.

The scenes on the right hand side are designed to be slightly more demanding. By
lowering the sensor elevation less sample points of the sideboard’s top surface are
sampled. Furthermore, objects have been also placed a little closer to each other. This
is especially the case for the two scenes at the top and bottom on the left, where
PFANNER and KAFFEEKANNE and PFANNER and KAFFEEMASCHINE respectively are placed
in close proximity. Nevertheless, it still is possible to find and connect all parts of
the sideboard’s surface. Therefore, good segmentation results are expected for Scene
Interpretation.

Figure 4.1: Left: Four tabletop settings using a standard kitchen table. Sensor elevation
is 35 degrees. Right: Five tabletop setting using the top of a sideboard. Sensor elevation
is 25 degrees. Each scene contains three known objects that are more or less arranged
in a straight line at the center of the planar surface they stand on.

40 Martin Bertsche

4.1. SCENE SELECTION

Another interesting property of the scenes on the right is that the top shelf of the
sideboard is visible and will be segmented as another planar surface as well. For these
cases, where planar surfaces occur in a stacked fashion, the hierarchical clustering is
expected to be proven useful. No parts of the objects placed on the top surface should
be segmented redundantly.

4.1.2 Tabletop Settings with Disturbance

The next class of scenes as shown in figure 4.2 is designed to be challenging for Scene
Interpretation. The scene with the red couch at the top does not contain a planar
surface due to the warped seating surface of the couch. Therefore, it is to be expected
that the normal based filtering, which is done before planar segmentation, is going to
remove many points of the surface supporting the objects.

Since the couch is behaving like a plain red background, there is reason to assume
for Colour Based Segmentation to outperform ScI. The colors of the objects and the
couch are sufficiently dissimilar. This is especially true for the coffee maker in the two
right most scenes of the top image. However, it is unclear how the colourful textures
of the other objects like PFANNER or PRINGLES are going to behave. The question is
whether the texture pattern has a sufficiently fine granularity such that the mean colors
computed by the down-sampling process are similar enough for no over-segmentation
to occur.

The scenes at the bottom are taken from a desk. They contain unknown objects such as
key boards and a mouse that cover large portions of the desk’s surface. While the mouse

Figure 4.2: Top: Couch scenes. The surface is warped. Bottom: A desk scene where
the keyboards and the mouse are unknown objects occluding parts of the desk’s surface.

martin@martinbertsche.dyndns.org 41

CHAPTER 4. OPTIMIZATION AND ANALYSIS

is most certainly removed by the normal based filtering step of Scene Interpretation,
this is not necessarily the case for the keyboards. The normals are computed from
a surface fit using a k-neighbourhood of each point. The keys on a key board are
sufficiently close to form planar surfaces. Due to the Euclidean Clustering step, which
is applied after filtering the point cloud by normal direction, points of the table will
be merged with points of the keyboards. This produces noise in the data passed to
RANSAC reducing the probability of finding the correct plane model.

Although there is no homogeneous background in the desk scene, as there is for the red
couch, CbS can be expected to outperform Scene Interpretation in those cases where
– due to the unknown objects – the detection of planar surfaces fails. Of course the
texture based restrictions apply.

4.1.3 Cluttered and Occluded Scenes

Cluttered Scenes as they are shown in Figure 4.3 are expected to be nearly impossible
to segment using planar surface detection methods. Certainly the supporting surface
planes can always be detected when viewing the scene from above. Robots however,
are often incapable of positioning the sensor directly above the scene. From the scenes

Figure 4.3: Top left: Objects on a flight of stairs. Top right: Objects on the floor.
Bottom: Tabletop scene. All scenes are cluttered and contain multiple instances of the
trained objects.

42 Martin Bertsche

4.1. SCENE SELECTION

depicted in Figure 4.4 it can also be seen that even manipulator mounted sensors can
not be positioned on top due to obstructions. Furthermore, since the object training
done for this work only permits recognition of objects from a maximum elevation of
approximately 45 degrees, top views are not suitable for recognition. Therefore, the
Color Based Segmentation approach is expected to perform significantly better on these
scenes than Scene Interpretation.

Clutter can also be achieved by placing only few objects in a very confined space such as
a drawer or a box. While clutter and mutual occlusion certainly are challenging factors
for Scene Interpretation in the scenes on the top right and bottom of Figure 4.4, the
major difficulty is the occlusion of the planar surface by the front wall and front panel
of box and drawer. Thus Scene Interpretation lacks the major capability of segmenting
objects inside containers. Another unfavourable property of containers which is also
present in the top left scene is the presence of side walls. Although Sample Consensus
model fitting is very accurate it is never optimal. The plane model will always be
slightly tilted. Therefore, one of the side walls is often recognized as object on the
surface because the surface is tilted in its direction. As pointed out for the disturbed
tabletop settings it is also difficult for the cluttered scenes to estimate whether the
textures of the known objects are favourable for the approach. Spectral Clustering is
assumed to be capable of outperforming CbS at the cost of bad repeatability. These

Figure 4.4: Top left: Objects on a shelf. Top right: Objects in a box. Bottom: Objects
in a drawer.

martin@martinbertsche.dyndns.org 43

CHAPTER 4. OPTIMIZATION AND ANALYSIS

scenes are expected to be a well chosen basis to test and compare the capabilities of
the two approaches.

4.2 Generic Parameter Sets

Choosing between different approaches is one particular way to increase the segmen-
tation capability, another method is to choose from multiple parameter sets per algo-
rithm, thereby increasing the segmentation capability of each approach. As for the set
of algorithms selected in Chapter 2 the goal is to achieve a high degree of versatility
when choosing the generic parameter sets. However, a major difference between the
processes is that the decisions for parametrization are not as final as those for the
segmentation approaches. While the implementation of an algorithm is a major invest-
ment in terms of work load, leaving no margin for testing a wide range of methods, the
parametrization only takes a few minutes and can even be automated. This permits
the determination of the generic parameter sets by means of experimentation.

Finding the generic parameter sets involves the following three steps: First a rough
tuning of the parameters, which is done manually. Applying the knowledge from Chap-
ter 2 many parameters can be well estimated. The initial parametrization is also used
to perform an initial evaluation of the algorithms. For the main part this evaluation
consist of testing whether the different approaches are behaving as anticipated. For
some parameters their influence will be unclear especially when they are interacting; i.e.
when changes of one parameter strongly influences the behaviour of another parameter.
The second step is a brute force optimization. It is used to find value combinations
that show good segmentation performances. Based on the brute force optimization the
best parameter sets are chosen using a voting based approach.

4.2.1 Manual Parametrization

There are by far too many parameters for the three segmentation algorithms to discuss
them all. The parameters that are used by all algorithms and their values are be
explained in this section. Furthermore, the most important parameters of CbS, ScI
and SpC will be discussed.

One of the limitations of the VFH object recognition approach covered in Section 3.3,
is the small field of view in which objects can be reliably recognized. Therefore all
algorithms share a common preprocessing step which removes all points lying outside
this field of view. For simplicity reasons the field of view is modelled as an axis-aligned
box which can be defined by minimum and maximum values along the x, y and z axes.
The virtual box used for this work is one meter in width, height and 1.1 meters in
depth. It is centered in x and y direction. In z direction it is shifted by 0.4 meters.
This is necessary since the sensor cannot reliably measure distances below 0.4 meters

44 Martin Bertsche

4.2. GENERIC PARAMETER SETS

leading to erratic behaviour in this range.

Down-sampling is a second processing step that all algorithms share is. All data passed
to the segmentation algorithms first undergoes voxel grid filtering. The leaf size is set
to 1 cm3, which means that all points inside a 1 cm3 volume will be replaced by their
center of gravity. For points that contain further information like color the same is
done for the additional components.

Parametrizing Color-based Segmentation

Manual parametrization of CbS shows that no parameter set can be found that will
perform well for very colorful objects like PRINGLES, PFANNER and CHOCLAIT-CHIPS.
This lack of the parameter set has been anticipated. Their unfavourable texture leads
to over-segmentation whereas KAFFEEKANNE and KAFFEEMASCHINE are perfectly seg-
mented.

However, some parameter sets show a very interesting behaviour. When setting the
colorimetric threshold for both the points and the regions to considerably low levels
the segmentation looks like a negative of the desired result. While the background is
still segmented correctly, there are holes where the objects should be. This happens
because the over-segmentation effect is amplified to a level that even after merging and
refinement the segments are very small where the objects are located. The original
paper proposes to merge very small segments to a greater neighbouring region whereas
the implementation for this work discards them.

Both ways of handling the small regions yield unwanted results. Therefore, the algo-
rithm is changed to collect all of the small regions and put their points into a single
point cloud. This cloud subsequently undergoes a euclidean clustering step. The result
is small segments that are close to each other are used to form larger segments regardless
of their color. Thereby, the missing objects are reconstructed. The regions generated
this way are added to the segments found by ordinary Color-based Segmentation.

The two most important parameters of CbS are the colorimetric distance thresholds.
They are an upper bounds for the euclidean distance of the colors of two points or
regions. CbS does not transform the 24-bit RGB values to the [0 . . . 1] range. The
maximum difference between two colors is therefore 255 ×

√
3 ≈ 442, which is the

difference between black and white. In order to obtain the over-segmentation necessary
for the extended Color-based Segmentation approach to work properly the point-to-
point colorimetric distance threshold has to be as low as 10 - 30. For merging and
refinement the region-to-region threshold must be chosen even lower (4 - 7) since these
are represented by their mean color.

Another key element to the over-segmentation based extension of CbS is the definition
of what a small segment is. CbS defines segment size by the number of points inside

martin@martinbertsche.dyndns.org 45

CHAPTER 4. OPTIMIZATION AND ANALYSIS

the segment. A cluster representing a correctly segmented object roughly contains 400
points depending on the object’s size. Therefore the minimum segment size has to be
considerably smaller, approx. 10% of the nominal segment size. Multiple tests show
that indeed best results are achieved when choosing the minimum segment size between
30 and 50 points.

Also important is the euclidean distance threshold for points since CbS is euclidean
clustering based. The point-to-point distance threshold encodes information about
the relative locations of objects within the scene. Increasing the threshold leads to
under-segmentation because adjacent objects are merged. Decreasing the threshold
leads to over-segmentation of self-occluding objects like KAFFEEMASCHINE. However,
from previous work with euclidean clustering good parameters are already known to
lie within the range between 1 centimeter and 5 centimeters.

Parametrizing Scene Interpretation

In contrast to Color-based Segmentation Scene Interpretation worked as expected. ScI
is designed to be a parameterless segmentation algorithm. Despite its many processing
steps, which of course need various parameters, there should be no need to tune them
for a specific application. A parameter set applicable for one scene should ideally be
applicable for all scenes. This is basically true given the fact that Scene Interpretation
very restrictively defines the type of scene for which it applies. However, the goal of this
work package is to soften the restrictions by showing that using multiple parameter sets
permits good segmentation results even for scenes that would otherwise be questionable
cases.

Some leverage points toward that goal are already identified in Section 2.4.1. They
are all related to the planar surface detection step, since this is the primary point of
failure of the approach. The first important parameter in this context is the down-
sampling resolution. In addition to the down-sampling already performed on the data
during preprocessing, ScI performs another voxel grid filtering step after normal based
filtering. Lowering the resolution decreases the processing time considerably but it also
leads to less planar surfaces being detected. The down-sampling resolution encodes the
user’s expectations about how clearly the surfaces are visible in the scene. For very
distinct surfaces ScI will succeed even for very low resolutions while scenes where the
planar surfaces are occluded may also fail for considerably high resolutions. Since
planar segmentation proves to be already fast enough even for high resolutions, down-
sampling is set to values between 2 cm3 and 4 cm3.

After down-sampling, the planar point candidates which have normals pointing upward
are clustered applying a euclidean clustering step. The most important parameter in
this step is the distance termination criterion discussed in Section 2.1. Obviously the
distance threshold must be chosen larger than the down-sampling resolution. So due
to the upper bound for down-sampling being 4 cm3 the lower bound for the threshold

46 Martin Bertsche

4.2. GENERIC PARAMETER SETS

Figure 4.5: Example of a usual spectral clustering result. The clusters bear no meaning.

is 5 centimeters. The upper bound encodes the minimum distance between two planar
surfaces to be recognized as separate. Manual measurements in the recorded scenes
showed that this distance should never exceed 15 centimeters.

As for CbS there also exists a minimum cluster size threshold for euclidean clustering.
The process discards all segments having a point count below the threshold. In terms
of planar surface detection this is the number of points visible per surface. When
filtering the points of the input cloud by their normal direction, upward pointing nor-
mals are found in various places that are not expected. This is due to the normals
being estimated from a neighbourhood of eight points. Even very irregular shapes
can therefore generate upward pointing normals which happens particularly often in
combination with sensor noise. Very good segmentation performance can be achieved
when choosing the minimum cluster size between 100 and 200 points.

Parametrizing Spectral Clustering

Unfortunately Spectral Clustering using the Nyström Extension is a great disappoint-
ment. Although the segmentation results are expected to have a lower reliability than
the other algorithms it was not expected that the rate of good segmentation results
would be as low as approximately every 200 scans. This low rate makes it impossi-
ble to do any manual parameter tuning because there is a very long waiting period
between changing the parameter set and seeing the result. A usual result of spectral
clustering cab be seen in Figure 4.5. It is a more or less regular pattern that is in no
way connected to the real world objects inside the scene.

Nevertheless Spectral Clustering segmentation results are astonishing in case they work
well. The results displayed in Figure 4.6 sparked the idea that Spectral Clustering could
be an ideal candidate for the hierarchical segmentation approach. As can be seen the
segmentation algorithm is not influenced by the objects that are placed in and on the
shelves. The pieces of furniture are segmented together with their contents or the

martin@martinbertsche.dyndns.org 47

CHAPTER 4. OPTIMIZATION AND ANALYSIS

Figure 4.6: Examples of Spectral Clustering working well.

objects on top of them. However with such results being only generated every 200 runs
it is not applicable for any task.

The reason for the bad performance most probably lies with the low sample size of just
50 sample points that has to be chosen for Spectral Clustering to perform segmentation
in little under a second. Test runs using twice as many samples do not improve the
reliability by a measurable amount. However they come at the cost of seven seconds
processing time per point cloud. Tests using 200 and more samples were aborted
prematurely because processing takes already almost a minute per frame.

The only remaining method to improve the number of samples that can be processed
in a reasonable amount of time is to choose a parallel implementation for the GPU. A
very effective CUDA-based eigenvalue/eigenvector-solver is presented in [2]. However
the published source code turned out to be too old for the current hardware. Runtime
errors were constantly encountered due to incompatibilities of the software with the
relatively new graphics card.

4.2.2 Brute Force Optimization

For most of the parameters that were roughly tuned during manual parametrization,
applicable value ranges were found instead of single values. Many of the parameters
are highly interdependent. Thus they cannot be optimized one by one, which is the
only manually feasible optimization method. An automatic way of finding the best
parameter set for a scene has to be found.

Finding the best parameter set is essentially a search task. The search space is deter-
mined by the number np of parameters that need to be optimized and by the number
of values each parameter is allowed to assume. Given that there is a fixed number of

48 Martin Bertsche

4.2. GENERIC PARAMETER SETS

values nv each parameter can assume, the size of the search space is n
np
v . Manually

identifying the most influential parameters and identifying their best value ranges, as
it is done in Section 4.2.1, is a necessary precondition, since the search space is growing
exponentially with the number of parameters. It is not feasible to search the whole
space of averaged 15 parameters per algorithm for each scene. The number nv of al-
lowed values per parameter also has a strong influence on the search space. Particularly
problematic are real valued parameters as well as integer valued parameters with large
value ranges. For these parameters the value ranges must be discretized to keep the
search space within a workable size.

For Scene Interpretation three important parameters are identified. Each of the pa-
rameters is assigned three allowed values within the ranges determined during manual
tuning. This totals 27 parameter sets being generated for each scene. Four parame-
ters are used for experimentation with Color-based Segmentation. The lists of allowed
values are ranging between two and four entries. A total of 180 experiments are gen-
erated per scene. Given the 36 scenes that have been recorded, for ScI a total of 972
experiments are performed whereas for CbS there are 6480 experiments.

In order to automate the search for the best parameter set per scene, a brute force
approach is applied. The segmentation processes are implemented using the BOR3D
framework. BOR3D offers a file configuration mechanism using the JavaScript Object
Notation (JSON) file format. Each segmentation process is equipped with a data
acquisition component that loads previously stored point clouds from a source directory
which is given by the configuration file. The test scenes from Section 4.1 are stored in
a directory tree where each of the 36 scenes has its own folder. Every folder is occupied
by 100 files containing point clouds of the respective scene. An instance of a BOR3D
process is only able to use one parameter configuration at a time.

For this work a process instance is called an experiment. An experiment is defined by a
configuration file that contains a combination of allowed values for the parameters and
a path to the source directory of a scene. The experiments are automatically generated
from a configuration file template. Additionally, an experiment definition file contains
the parameters that must be changed for each experiment along with a set of permitted
values for each parameter. A script reads the information in an experiment definition
file and produces as many versions of the template configuration as there are permitted
value combinations. Each experiment is placed in a separate working directory. A shell
script is used to sequentially execute the BOR3D process for each configuration.

For manual parameter tuning the segmentation result is inspected by looking at a vi-
sualization of the segmentation result. This is not feasible any more since there are
simply too many results that have to be inspected. Instead, the scoring approach pro-
posed in Chapter 3 is implemented. The required annotation files are placed inside the
folders which contain the point clouds of the scenes. After segmentation, recognition
and score calculation for each recognized object the process compares the recognition

martin@martinbertsche.dyndns.org 49

CHAPTER 4. OPTIMIZATION AND ANALYSIS

annotation recognition

1

3 2 4 1

3 2 5 1 4 1
2 3 2 3 2 4 1
3 1 2 5 4 1 3
4 4 1 5 4 3 2

Table 4.2: Examples of an annotation of a scene and some recognition results that
need to be mapped to the annotation. The numbers represent database names of
known objects. Please note, that particularly bad results were artificially constructed
for demonstration purposes.

result to the contents of the annotation file. The total score of all correctly recognized
objects represents the segmentation score which is written to a score file inside the
experiment’s working directory. For each scan of the scene there is one entry in the
score file. Using the scenes recorded for the purpose of this work there are 100 entries
per score file.

Mapping Annotations and Recognition Results

As discussed in Section 3.3 the scenes are only annotated with the database names of
the objects in the scene. The sequence of the names is that of the objects’ occurrences
in the scene from left to right. The recognition process is extended to output the
objects’ positions in the scene so they can be sorted according to the annotation by
the scoring step. Subsequently the sequence of object names in the annotation are
compared to the sequence of object names within the sorted recognition output.

The process of comparing the sequences is explained here because it is not as trivial
as expected. For shorter notation integer numbers are used to define annotations and
recognition results. In order to understand how the current comparison algorithm was
derived the evolutionary steps will be described briefly along with the rationale why
they are not suitable for segmentation scoring.

The simplest approach to map an annotation to a recognition result is to compare the
annotated sequence one by one with the recognized sequence and check whether they
are equal. Considering the first row of Table 4.2 this method determines that objects
3 and 2 are correctly recognized whereas the rest of the sequence does not match the
annotation. Therefore, only the scores of these two recognitions are counted although
objects 4 and 1 are also recognized in correct sequence. Multiple tests showed that
recognitions such as those of objects 5 and 1 mostly happen due to unknown objects
in the background being segmented and falsely recognized as known objects. For such
cases this trivial approach generates segmentation scores that are too low.

In order to deal with these cases the simple approach needs to be extended such that

50 Martin Bertsche

4.2. GENERIC PARAMETER SETS

it does not stop as soon as a mismatch between the sequences occurs. The next
development iteration starts by searching the first annotation element in the recognition
sequence. When it is found it searches for the next annotated object in the rest of the
recognition sequence. This is continued until either the end of the annotation or the
end of the recognition is reached. Such an approach finds the sequence 3 2 5 1 4 1

and correctly scores the first row of table 4.2.

The disadvantage of this greedy matching method is shown by the second row of Table
4.2. The current version is bound to find 3 2 3 2 4 1. However looking at the scenes,
it is seen that the objects occur in bulk. Thus it is much more probable that 3 2
3 2 4 1 is the correct result. Therefore, a criterion is introduced that prefers the
shortest matching sequence in recognition. This shortest sequence is found by deleting
the first element from recognition as shown in Table 4.3 and rerunning the search for
the annotation sequence. This is done for as long as the annotation sequence can be
found.

The method however still fails in some cases: Consider the third row for which it
would only find 1 2 5 4 1 3 whereas the correct solution most probably is 1 2 5 4 1 3.
Obviously the approach is unable to deal with annotated objects that have not been
recognized. In the unfortunate case of the second row this already happened for the
first annotated object, thereby dismissing the correct matches for objects 2, 4 and 1.

To counter the effects of not recognized objects a recursive implementation is chosen.
Keeping the current practice of ignoring false positives within the recognition it is now
demanded that the algorithm finds the complete annotation sequence. If the anno-
tated sequence cannot be found, a set of sub-sequences is generated, each of which
accounts for one of the missing annotated objects. To these sub-sequences the algo-
rithm is applied recursively. As soon as the recursion reaches the second level – which
means that two objects cannot be recognized – redundant checks of sub-sequences are
performed. A global object maps annotation sub-sequences to matching sequences in
the recognition. So, if a recursion finds a sub-sequence in recognition it adds the result
to the global object and terminates. If the same subsequence has already been found
by another recursion step, the result is simply overwritten. An additional termina-
tion criterion is given by the demand to find matches that contain as many annotated

Call # Input Result

1 3 2 3 2 4 1 Found it! Next...
2 2 3 2 4 1 Found it! Next...
3 3 2 4 1 Found it! Next...
4 2 4 1 Not found! 3 Wins!

Table 4.3: Finding the shortest match. The first element is removed from the input
each time the sub-sequence is found.

martin@martinbertsche.dyndns.org 51

CHAPTER 4. OPTIMIZATION AND ANALYSIS

objects as possible. Therefore, a recursion also terminates if the sub-sequence it is
processing, is smaller than a sub-sequence that has already been found in recognition.
If a recursion finds a larger subsequence in recognition than those that have already
been found it deletes all the entries in the global object and inserts its own result.

All results in the global object by design relate to equally sized sub-sequences in the
annotation. In most cases there will actually be only one result. The condition that
can lead to multiple results is that recognition containing multiple equally sized sub-
sequences of the annotation in a wrong order. The fourth row of Table 4.2 is an example
of such a case. There is no way of telling whether 4 1 5 4 3 2 or 4 1 5 4 3 2 is the correct
result. Therefore, such a result is scored with the mean score of the alternatives.

The current algorithm uses all the extensions described in this Section and therefore
finds the shortest sub-sequence in recognition containing the most annotated objects
in correct sequence.

4.2.3 Voting Based Set Selection

Due to the large number of experiments being performed, evaluation also needs to be
automatized. A script traverses the experiment folder structure and collects the data
from the score files. Since segmentation and recognition performance varies between
scans, the mean score is computed from each file. This reliably scores the performance
of a parameter set on a given scene.

A matrix is created from the data. It contains the score that each parameter set
achieves for each recorded scene. This is done for each algorithm. For consistency
it is defined that the columns of the matrices relate to the parameter sets while the
rows relate to the scenes. Due to their size the matrices can be confusing, making
it difficult to extract information. They are therefore not printed in this document.
Instead charts are used to visualize the results in a more readable format.

The data format needed to determine a versatile set of generic parametrizations is
a performance profile which shows how well a parameter set copes with the scenes
compared to other parametrizations. Such a profile, as shown in Figure 4.7, has peaks
and valleys. When inspecting the profiles of multiple parameter sets, it is expected
that the peaks and valleys do not always occur for the same scenes. The goal is to find
a combination of parameter sets that has as few and as little valleys as possible. The
combination should also be kept small since it is not the goal to add parameter sets
which add just one scene to the algorithm’s segmentation capability.

Profiles can be quickly determined using the score matrix by extracting the columns.
However, the scores of different scenes are not comparable because the scenes contain
different numbers and kinds of objects. It would therefore be hard to say whether a
peak is a peak or a valley is a valley. Normalization is needed for the rows to have

52 Martin Bertsche

4.2. GENERIC PARAMETER SETS

all column entries in the same value range. The maximum row value marks the best
performing parameter set for the scene. A simple normalization can therefore be done
by transforming the row values into percentages of the maximum row value.

Yet, there are 27 performance profiles for ScI and 180 performance profiles for CbS.
Selecting complementary parameter sets from these many candidates is still a demand-
ing task. Further help is needed to narrow down the search space to a level that can
be handled manually.

As shown in Figure 4.7 the parameter set performs well on multiple scenes. The same
observation can be made for almost all of the parameter sets of both Color-based
Segmentation and Scene Interpretation. From another viewpoint a similar observation
can be made. When determining which parametrization performs best on a given
scene there is usually a set of parametrizations having the same or similar scores.
Parameter sets achieving high scores for many scenes are very likely to be generic.
The observation therefore suggests the implementation of a voting mechanism. A vote
counter is initialized to zero for each parameter set. Furthermore, for each scene the
highest scoring parameter set is determined along with additional parametrizations
that perform in the range of over 99% of the high score. The vote counter of each
parameter set determined in this way is incremented, resulting in a chart as it is shown
in Figure 4.8. For Scene Interpretation only parametrizations achieving a vote count
greater that ten are considered in the search for generic parameter sets.

The same voting approach is also used to narrow down the search space for Color-based
Segmentation. However, for CbS there are much more parameter sets to be tested than
there are scenes. As a result a total of 28 parametrizations achieve the maximum vote
count of four. A run-off vote is performed for these 28 parameter sets which reduces
the selection to four parameter sets. Three of them are chosen as the generic parameter

0 5 10 15 20 25 30 35
0

20

40

60

80

100

scene index

%
of

m
ax

.
sc
or
e

Performance Profile of ScI Parameter Set 22

Figure 4.7: Example of a performance profile taken from one of the ScI parameter
sets. Please note that all values are relative only to the maximum score achieved by
Scene Interpretation. They do not allow any conclusions for the absolute segmentation
performance.

martin@martinbertsche.dyndns.org 53

CHAPTER 4. OPTIMIZATION AND ANALYSIS

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

5

10

15

parameter set index

vo
te

co
u
n
t

ScI Parameter Set Vote

Figure 4.8: The ScI parameter set voting result. Only parameter sets receiving ten or
more votes are considered. These are the sets 0, 1, 2, 4 and 5 as well as 12, 15 and 16.

set for Color-based Segmentation.

Please see Figure 4.9 for the resulting performance profiles of Color-based Segmentation
and Scene Interpretation respectively.

4.3 Segmentation Results

In this section the segmentation results generated by the experiments are discussed.
First it is determined which parameter set of which algorithm is to be used for which
scene. This means the combined performance profile composed of the generic parame-
ter sets for Color-based Segmentation and Scene Interpretation needs to be generated.
This profile is a perfect basis for comparing the expected algorithm performances for-
mulated in Sections 2.4 and 4.1 to the experimental results. A high consistency be-
tween expectations and the performance profile is a strong indication for the validity
of the proposed segmentation approach, the choice of implemented algorithms and of
the recognition based quality metric. However, particularly interesting are the incon-
sistencies. They need to be traced back either to flaws in the approach or to false
expectations. Since all performance profiles depicted in this document are only rela-
tive to maximum scores achieved for the scenes, a last step of validation is taken by
manually inspecting the recognition performance using visualization.

4.3.1 Experiment-Expectation-Consistency

In Figure 4.10 the performance profile of Scene Interpretation is printed in red whereas
the one of Color-based Segmentation is printed in green. Wherever the red color is
visible a parameter set for ScI has performed better than any parameter set for CbS.
The diagram is therefore ideal to confront expectations and experimental results. For
better understanding a Table 4.4 is provided which maps the scene indices to the

54 Martin Bertsche

4.3. SEGMENTATION RESULTS

0 5 10 15 20 25 30 35
0

20

40

60

80

100

scene index

%
of

m
ax

.
sc
or
e

Generic Parameter Sets for Scene Interpretation

Set 0
Set 4

0 5 10 15 20 25 30 35
0

20

40

60

80

100

scene index

%
of

m
ax

.
sc
or
e

Combined Performance Profile for Scene Interpretation

0 5 10 15 20 25 30 35
0

20

40

60

80

100

scene index

%
of

m
ax

.
sc
or
e

Generic Parameter Sets for Color-based Segmentation

Set 2
Set 110
Set 155

0 5 10 15 20 25 30 35
0

20

40

60

80

100

scene index

%
of

m
ax

.
sc
or
e

Combined Performance Profile for Color-based Segmentation

Figure 4.9: Performance profiles for the generic parameter sets of Scene Interpretation
and Color-based Segmentation. The combined performance profiles show how optimal
the algorithm can operate if the correct parameter set is chosen for each scene.

martin@martinbertsche.dyndns.org 55

CHAPTER 4. OPTIMIZATION AND ANALYSIS

scenes. The scenes are the discussed in the same order as it is done in Section 4.1.
Scene boundaries are printed in Figure 4.10 as black vertical lines for better orientation.

The scans 0 - 4 relate to the tabletop setting. As anticipated this scene belongs to
the realm of Scene Interpretation. For most of the object combinations it scores far
better than Color-based Segmentation. However, for the scenes arranged on top of
the sideboard the situation is not as clear. Obviously there are object arrangements
which are better segmented applying CbS instead of ScI. This is unexpected because
the planar surface of the sideboard is assumed to be clearly visible. The assumption
proves to be wrong when inspecting intermediate steps of the segmentation process. It
shows that for the scenes where CbS outperforms ScI according to the quality metric,
the planar surface is not reliably detected when the recommended parameter set from
Section 4.2.3 is applied. There is also indication that this behaviour is related to the
choice of the parameter sets. Considering the combined performance profile of the
two parameter sets for ScI, a deviation from optimal performance coincides with the
transition from ScI to CbS being the better algorithm.

The red couch scene spans indices 16 - 18. As for the sideboard the results are am-
biguous. For two scans CbS is the preferred segmentation algorithm whereas one scan
should be segmented using ScI, according to the proposed quality metric. The result is
not unexpected since the scene has been rated a questionable case but not intractable
for Scene Interpretation. Despite its warped surface the supporting plane is detected
quite often depending on the objects’ positions. For the desk scene Figure 4.10 gives a
clear vote to Color-based Segmentation. This supports the assumption that unknown
objects occluding the table surface impair ScI’s segmentation capability.

Three scenes belong to the class of cluttered scenes. In contrast to the expected results
only one of the scenes is unambiguously attributed to CbS. For the cluttered tabletop
scene spanning indices 30 - 32 there even is a tendency towards Scene Interpretation

0 5 10 15 20 25 30 35
0

20

40

60

80

100

scene index

%
of

m
ax

.
sc
or
e

Combined Performance Profile for ScI and CbS

Figure 4.10: Combined generic parameter sets of ScI and CbS. It can be clearly seen
at which points the two algorithms are complementary.

56 Martin Bertsche

4.3. SEGMENTATION RESULTS

Index Range Scene

0 - 3 tabletop
4 - 8 top of sideboard
9 - 11 drawer
12 - 15 shelf
16 - 18 red couch
19 - 21 desk
22 - 25 stairs
26 - 29 cluttered floor
30 - 32 cluttered tabletop
33 - 35 box

Table 4.4: Mapping of scene indices to the scenes discussed in Section 4.1.

which scores higher than CbS on two of the three scans. Looking at the charts in
Figure 4.9 it can be seen that the generic parametrization enables both algorithms to
work at maximum performance for scans 30 and 31 however ScI’s performance drops
severely for index 32. Further investigation showed that the goal of occluding large
portions of the tabletop surface with known objects such that it cannot be detected
was only achieved for the last scan. For indices 30 and 31 planar surface detection was
working properly by applying the generalized parameter sets.

The stair scene is a very special case. It proves to be the hardest segmentation problem
in the repertoire. Although for three of the four object arrangements the generalized
parameter sets allow their respective algorithms to run at maximum performance, the
absolute scores are a factor ten below the scores achieved for the other scenes in this
class. Index 24 cannot be segmented at all by either of the algorithms. This situation
suggests that the stair scene is intractable for both Scene Interpretation and Color-
based Segmentation. It is therefore not further investigated.

Indices 9 - 11 are scans of a drawer containing objects. They belong to the highly
difficult scenes exposing occlusion of the planar surface beneath the objects and the
objects themselves. The same is true for the box scene which occupies indices 33 - 35.
For both scenes the quality metric unambiguously recommends applying Color-based
segmentation as it is expected. However, the scene showing objects in a shelf has an
outlier. Its scans span the indices 12 - 15. While three of the four scans show the
expected preference of CbS, this is not the case for scan 15. The reason for this is the
coffee pot. Large areas of its metal surface reflect the surrounding white walls. These
areas are therefore segmented as parts of the shelf. Considering Figure 4.9 it can be
seen that CbS is working below optimal levels for this scene. Hence there is a parameter
set for CbS exposing better performance. However, this particular parameter set is not
part of the selected parametrizations.

martin@martinbertsche.dyndns.org 57

CHAPTER 4. OPTIMIZATION AND ANALYSIS

Only relative scores were considered until now because for the selection process it is only
important to know whether an algorithm and parameter set is outperforming another
algorithm/parameter set combination. Using the relative scores it is also possible
to quickly determine whether an algorithm is running at top performance. However,
when doing segmentation for object recognition it is not sufficient to have segmentation
running at top performance. Top performance can still yield bad results. It must be
proven that the segmentation performed with the algorithms and parametrizations
recommended by the quality metric generate useful segmentation results. The best
way of showing the segmentation performance is therefore to show on how many scenes
object recognition is working well. Table 4.5 depicts a selection of the scenes discussed
in Section 4.1. For the full table of recognition results please see Table C.1 in the
appendix. The images show the segmented scenes. Points belonging to the same
segment are printed in the same color. The names of the objects, if recognized, are
printed in white.

Recognition Result Original Scene i

0

9

58 Martin Bertsche

4.3. SEGMENTATION RESULTS

Recognition Result Original Scene i

16

30

Table 4.5: A subset of the recognition results achieved using the parameter sets and
algorithm recommended by the segmentation quality metric. For a full set please refer
to Table C.1.

martin@martinbertsche.dyndns.org 59

Chapter 5

Conclusion

A major contribution of this thesis is the implementation of three segmentation ap-
proaches. The algorithms are implemented using the BOR3D Framework. While
Color-based Segmentation and Scene Interpretation both achieve very good segmenta-
tion results Spectral Clustering does not live up to the expectations. This is due to
the very small amount of sample points given to the Nyström Extension. Probably the
only method to use Spectral Clustering on a personal computer in a reasonable amount
of time is to use a GPU implementation. Considering the nearly flawless results when
Spectral Clustering is working well, it is certainly worth the while to try and port the
code by Catanzaro et al. for newer CUDA devices.

The newly developed segmentation quality metric is considered a major contribution
as well. Using its recommendations, algorithms and parameter sets can be chosen that
generate convincing segmentation and recognition results. Only for one of the 36 scenes
no segmentation can be achieved at all. This result is achieved despite one missing al-
gorithm. The quality metric can be used to create performance profiles. They are a
precise diagnostic instruments able to pinpoint weak spots of a segmentation approach.
The only thing needed is a series of different scenes. The experimentally determined
performance profiles do not confirm some of the previously made assumptions. How-
ever, further analyses of the discrepancies between the anticipated and the measured
performance profiles show that the measurement is far more accurate. All differences
could be traced back to misconceptions in the scene classification done in Section 4.1.
This strongly supports the validity of the quality measure.

Currently the selection of algorithm and parametrization is done manually. Automa-
tion of the selection process can be done using a classifier such as a Support Vector
Machine or a decision tree. Since raw point clouds cannot be used as input data a
scene description method is still needed. The development of such a description could
not be considered within the allotted time. Although the performance profiles are a big
step towards an automatic benchmark for segmentation algorithms, there is reason to

60

believe that using them for training a classifier would still not result in a well trained
agent. The performance profiles of single parameters and even whole algorithms do not
show consistent results for scenes of the same type. While for some scenes it could be
shown that the initial classification was incorrect for other scenes the inconsistencies
remain unexplained. There are two possible reasons for such inconsistent behaviour:
The first reason could be that the inconsistently scored scenes are simply outliers that
are generated by the specific set of objects used for annotation. Simply by increasing
the number of scenes per scene type should appreciably reduce the effect of such out-
liers. Another source could be the fashion in which the parameter sets are chosen as
of now it has not been investigated whether using different parameter sets results in
more consistent performance profiles.

For the primary goal it is shown that an object recognition approach which has formerly
been restricted to tabletop settings, is now capable of performing well on a variety of
other scenes. It is proven that the choice of the correct algorithm and parameter set
for a given problem improves the capabilities of segmentation and therefore object
recognition.

martin@martinbertsche.dyndns.org 61

CHAPTER 5. CONCLUSION

62 Martin Bertsche

Bibliography

[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour
detection and hierarchical image segmentation. (UCB/EECS-2010-17), Feb 2010.

[2] Catanzaro B., Su B.-Y., Sundaram N., Lee Y., Murphy M., and Keutzer K. Effi-
cient, high-quality image contour detection. In International Conference on Com-
puter Vision (ICCV), pages 2381 – 2388, Kyoto, Japan, 09 2006.

[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.
Efficient management of parallelism in object oriented numerical software libraries.
In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

[4] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, September 1975.

[5] M. Bertsche, T. Fromm, and W. Ertel. Bor3d: A use-case-oriented software frame-
work for 3-d object recognition. In IEEE Conference on Technologies for Practical
Robot Applications (TePRA), 2012.

[6] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and E. Y. Chang.
Parallel Spectral Clustering in Distributed Systems. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 33(3):568–586, March 2011.

[7] Xiaopeng Chen, Qiang Huang, Peng Hu, Min Li, Ye Tian, and Chen Li. Rapid
and precise object detection based on color histograms and adaptive bandwidth
mean shift. In Proceedings of the 2009 IEEE/RSJ international conference on
Intelligent robots and systems, IROS’09, pages 4281–4286, Piscataway, NJ, USA,
2009. IEEE Press.

[8] Martin A. Fischler and Robert C. Bolles. Readings in computer vision: is-
sues, problems, principles, and paradigms. chapter Random sample consensus:
a paradigm for model fitting with applications to image analysis and automated
cartography, pages 726–740. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1987.

I

BIBLIOGRAPHY

[9] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral group-
ing using the nyström method. IEEE PAMI, 26(2):214–225, February 2004.

[10] Karol Hausman, Christian Bersch, Dejan Pangercic, Sarah Osentoski, Zoltan-
Csaba Marton, and Michael Beetz. Segmentation of cluttered scenes through
interactive perception. In ICRA 2012 Workshop on Semantic Perception and
Mapping for Knowledge-enabled Service Robotics, St. Paul, MN, USA, May 14–18
2012.

[11] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A survey of software for
sparse eigenvalue problems. Technical Report STR-6, Universitat Politècnica de
València, 2009. Available at http://www.grycap.upv.es/slepc.

[12] Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A scalable and
flexible toolkit for the solution of eigenvalue problems. ACM Transactions on
Mathematical Software, 31(3):351–362, 2005.

[13] David G. Lowe. Object recognition from local scale-invariant features. In Pro-
ceedings of the International Conference on Computer Vision-Volume 2 - Volume
2, ICCV ’99, pages 1150–, Washington, DC, USA, 1999. IEEE Computer Society.

[14] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and mea-
suring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2,
pages 416–423, July 2001.

[15] Carlo Dal Mutto, Pietro Zanuttigh, Guido M. Cortelazzo, and Stefano Mattoc-
cia. Scene segmentation assisted by stereo vision. In Proceedings of the 2011
International Conference on 3D Imaging, Modeling, Processing, Visualization and
Transmission, 3DIMPVT ’11, pages 57–64, Washington, DC, USA, 2011. IEEE
Computer Society.

[16] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In ADVANCES IN NEURAL INFORMATION PROCESSING
SYSTEMS, pages 849–856. MIT Press, 2001.

[17] Victor Y. Pan and Zhao Q. Chen. The complexity of the matrix eigenproblem. In
Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton, editors,
STOC, pages 507–516. ACM, 1999.

[18] T. Rabbani, F. van den Heuvel, and G. Vosselman. Segmentation of point clouds
using smoothness constraint. In H.-G. Maas and D. Schneider, editors, Proceedings
of the ISPRS Commission V Symposium ’Image Engineering an Vision Metrology’,
pages 248 – 253, Dresden, 2006. ISPRS.

[19] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast 3D

II Martin Bertsche

BIBLIOGRAPHY

Recognition and Pose Using the Viewpoint Feature Histogram. In Proceedings of
the 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Taipei, Taiwan, October 18-22 2010.

[20] R.B. Rusu, Nico Blodow, Z.C. Marton, and Michael Beetz. Close-range scene
segmentation and reconstruction of 3D point cloud maps for mobile manipula-
tion in domestic environments. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1–6. IEEE, October 2009.

[21] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22:888–905, 1997.

[22] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, August 1969.

[23] Manuel Wopfner, Jonas Brich, Siegfried Hochdorfer, and Christian Schlegel.
Mobile manipulation in service robotics: Scene and object recognition with
manipulator-mounted laser ranger. In Robotics(ISR) 41st International Sympo-
sium and 6th German Conference on Robotics (ROBOTIK). IEEE, 2010.

[24] Q. Zhana, Y. Liangb, and Y. Xiaoa. Color-based Segmentation of Point Clouds. In
G. Vosselman F. Bretar, M. Pierrot-Deseiligny, editor, ISPRS Proceedings: Laser-
scanning, number XXXVIII-3/W8, 2009, pages 248–252, Paris - France, 2009.
ISPRS.

martin@martinbertsche.dyndns.org III

Appendix A

Original Thesis Specification

A.1 Introduction

Segmentation in 3D is the task of assigning a label to each point inside a point cloud
such that all points in possession of the same label belong to the same object in the
real world. It is a very important step for many object recognition pipelines. There are
several approaches to isolating segments which rely on geometric properties or color
properties. Each of them has its advantages and disadvantages.

The disadvantages all result in the two major challenges of point cloud segmentation:
(1) over-segmentation which means that an object is represented by multiple segments.
(2) under-segmentation which relates to the case where segments contain more than one
object. Both describe the failure of an approach to derive a desired bijective mapping
of labels to real world objects.

A.1.1 Motivation

Whenever a segmentation method fails there is very likely a complementary approach
which is able to succeed. The same observation can be made when looking at different
parameter sets for the same algorithm. Human experts are often able to qualitatively
predict whether a segmentation method will perform well or poor for a given scene based
on their knowledge about assumptions encoded int the algorithm or the parameter set.
Such predictions can also be made intuitively after some time when using algorithms
as black boxes. It is necessary to investigate to which extent machines are also able
to obtains this kind of experience in order to make adequate decisions about which
method to use.

Conventional approaches to 3D object recognition perform single-staged segmentation
and object recognition. A practice which makes segmentation a demanding task. Al-

IV

A.2. WORK PACKAGES

gorithms used for large scenes must be able to cope with many different levels of
detail simultaneously. Finding parameters for such approaches is commonly a trade-off
between over- and under-segmentation of certain real world objects. Recursive – or
multi-staged – segmentation on scene clusters of decreasing scales can be expected to
be a fertile approach to escape this predicament. Such divide-and-conquer approaches
can be further optimized by introducing a recognition step after each segmentation
run. The recursion has to step when segment sizes drop below a predefined threshold
or all segments have been recognized.

A.1.2 Objective

The goal of this thesis is to propose an approach for 3D segmentation and object
recognition. It is assumed that a method for object recognition and a set of hetero-
geneous segmentation methods are available. The approach will recursively subdivide
and analyse segments based on the segmentation and recognition approaches at hand.
The segmentation algorithm used for each recursion is automatically selected.

A.2 Work Packages

Six work packages have been identified in order to achieve this objective.

A.2.1 Choice and Implementation of Algorithms

The algorithms considered for analysis are pipelines of several processing steps. Im-
plementations of the single processing steps already exist in parts. Missing steps need
to be implemented and combined with existing ones in the way that is specified in the
corresponding papers. A minimum of three algorithms need to be implemented but
no mere than five are necessary due to the amount of time allotted. The algorithms
will be developed using the Point Cloud Library and the BOR3D framework. The
implementation must contain visualization.

• Which segmentation algorithms were chosen? Why were they chosen?

• In what way are the segmentation algorithms expected to be complementary?

• Have there been challenges reimplementing the algorithms from the information
given in the corresponding papers?

• How were the segmentation algorithms implemented?

• Are there deviations from the original proposal? Why were these alternatives
chosen?

martin@martinbertsche.dyndns.org V

APPENDIX A. ORIGINAL THESIS SPECIFICATION

• Which recognition algorithm is being used? Why is it being used?

A.2.2 Algorithm Analyses

The performance of each algorithm must be thoroughly evaluated by hand. In order
to do that the scenes used for evaluation mus be carefully chosen and documented. A
comparison of the algorithms with different parameter sets should provide a reasonable
amount of insight to determine generic parameter sets which are not specialized on
single scenes.

• Which scenes were chosen for evaluation?

• Which characteristics make them interesting for evaluation?

• Do the segmentation algorithms perform as expected?

• Are there cases where no segmentation algorithm / parameter set succeeds? Why
does none of them succeed?

A.2.3 Determining Generic Parameter Sets

Each segmentation approach needs parameters to adapt its performance to a given set
of scenes. The performance can vary widely depending on the scene and parameter set.
Therefore the approach does not solely rely on choosing between different algorithms
but also on choosing between different parameter sets for each algorithm.

• Fine-tuning of the parameter sets to cover all the cases identified during the
previous analyses.

• Documentation of the resulting parameter sets. They are to remain constant.

A.2.4 Training Design

Automatic algorithm selection will be driven by a classifier such as a Support Vector
Machine, a Decision Tree or a Neural Network. Training such a classifier requires
a list of labelled feature vectors. For each algorithm or parameter set there will be
one label. The feature vectors will be determined by a global description algorithm
which is computing using the scene’s entire point cloud. There are many scenes and
also many view points from which to look at a scene. It is tedious to label training
data manually. This needs to be automatized using a score which is determined using
recognition results. A scene description receives the label of the algorithm or parameter
set receiving the best score.

• Elaborate a training method which fulfils the requirements.

VI Martin Bertsche

A.2. WORK PACKAGES

• The classification method needs to be exchangeable.

• Which classification method was chosen? Why was it chosen?

• Is the method applicable to unknown scenes?

A.2.5 Training Implementation

In order to accelerate the training process a few extra pieces of software are needed.
The recognition process must compute a quality metric which enables comparison of
recognition results of different objects. A tool is needed to create the training data. It
uses recognition quality to score the different segmentation algorithms and assigns the
correct labels to the feature vectors. It is to be expected that a few additional features
have to be annotated by hand. The actual training will be performed using third party
libraries and tools compatible with the existing implementation. Therefore they must
expose a C/C++ API.

• Implement Training.

• Perform Training.

• Find classification method performing the best algorithm choice.

• Review segmentation algorithms and parameter sets. Do they work as expected?

• Document statistical results.

A.2.6 Finalization

• Evaluate statistics and draw conclusion.

• Finish writing thesis.

martin@martinbertsche.dyndns.org VII

Appendix B

Viewpoint Feature Histogram -

Training Manual

The main requirement for training VFH feature models are 3D point clouds of the
objects to be trained. Multiple point clouds are needed per object – each made from a
different view angle. Putting a spherical frame in the center of the object the recom-
mended resolution for the rotation φ is three degrees in the case of 4-degrees-of-freedom
(4-DOF) recognition and additionally five degrees for the elevation angle θ for 6-DOF
recognition respectively. VFH is not able to estimate the object’s position. Such in-
formation must be obtained by a preceding step.

B.1 Data Acquisition

The different φ angles can be obtained by rotating the object along its y-axis while the
sensor position remains fixed. For variation in θ the sensor must be mounted on an arc
above the object. The sensor has to be moved along the arc after every φ iteration.
Alternatively move the sensor parallel to the object’s y-axis. Of course by this way not
all view angles of the object can be trained. Please take care that the object does not
leave the sensor’s field of view when manipulating the sensor position.

Rotating the sensor 360 degrees or even more times when training for 6-DOF recog-
nition is tedious. It is therefore recommended to use a system that automatizes the
process. Please note that 4-DOF recognition does have further implications. Due to the
fact that VFH object recognition is strongly dependent on the view angle differences
in θ between training and recognition will lead to degraded recognition results.

The segmentation algorithm performed as preprocessing step relies on the precondition
that the object is placed on a planar surface. Please make sure taht at least half of the
points in the point cloud belong to that surface.

VIII

B.1. DATA ACQUISITION

B.1.1 Software Setup

It is assumed that you are using a turning table driven by a Nanotec SMCI47 S-2
stepper controller to rotate the object. A description of integrating custom training
automatization systems will be given later in this section.

In order to perform data acquisition the dump application is needed. Please perform
the following steps:

1. Install libnanocontrol

(a) $> git clone http://git.code.sf.net/p/libnanocontrol/code

<NCTRL ROOT>

(b) $> mkdir <NCTRL ROOT>/build

(c) $> cd <NCTRL ROOT>/build

(d) $> cmake ..

(e) $> make

(f) $> sudo make install

2. Clone BOR3D and build dump

(a) $> git clone http://git.code.sf.net/p/bor3d/code

<BOR3D ROOT>

(b) $> mkdir <BOR3D ROOT>/build

(c) $> cd <BOR3D ROOT>/build

(d) $> cmake ..

i. install all missing dependencies that are reported by CMAKE they
should all be available in the package management system of your Linux
distribution.

(e) $> make dump

i. result: <BOR3D ROOT>/build/src/examples/kinect2pcddumper/dump

B.1.2 Using dump

In order to invoke dump you need the mandatory command line option --config-file.
The argument should point to an existing JSON formatted configuration file for this
application. If you do not have such a file you can create a new one by adding
--configure. An example of such a configuration file for 4-DOF VFH training data

martin@martinbertsche.dyndns.org IX

APPENDIX B. VFH - TRAINING MANUAL

acquisition can be found in <BOR3D ROOT>/configs/dump. In order to use the logging
mechanism present in any BOR3D application please have the LogConfig configura-
tion file entry point to <BORED ROOT>/log/log.config or any other log4j-compatible
configuration file that suits your needs.

After invoking dump you should get to the BOR3D prompt BOR3D>. Currently there
exist four commands: help will give you a short description of the commands. start
will start the dumping process. stop will interrupt the dumping process. quit will
bring you back to the shell.

dump uses the OpenNI grabber wrapper provided by the Point Cloud Library so you
can use any compatible sensor.

dump does not stop running by itself. stop has to be called after all necessary data has
been written to <DUMP WORKING DIR>/raw.

B.1.3 Customizing dump

It is very unlikely that you have an automatized object training system compatible with
version of dump provided in the repository. Nevertheless it is possible to make BOR3D
support your own system by writing some custom code. For that task it is best you take
the implementation for our system as a template that you adjust to your needs. Cre-
ate a copy of <BORED ROOT>/include/bor3d/3d/grabbers/grabber addons/grab-

ber table addon.h.

1. Prepare your template:

(a) change the file name and adjust the include guards accordingly

(b) remove all BORED SLOT macro calls

(c) remove all BORED SLOT INIT initializers from the constructor

(d) remove all private member declarations

i. keep m grab counter

ii. keep m turn interval

(e) clean the protected method definitions

i. keep the BaseType::xxx() calls.

ii. keep all m grab counter and m turn interval related parts

(f) rename the Table class to a <SYSNAME> of your choice

(g) change the specialization parameter Table in Grabber to <SYSNAME>

X Martin Bertsche

B.1. DATA ACQUISITION

2. Suit the template to your needs

(a) if you need to store some data or a communication object create a member
for it

i. declare it private

ii. declare it as a pointer

(b) if you need configuration data for bus communication or system parametriza-
tion create BORED SLOT(i, ii, iii, iv, v)

i. the <NAME> of the slot. By convention slot names should begin with a
capital letter.

ii. the <DATATYPE> (must support copy-construction)

iii. the communication class (you should always choose STATIC)

iv. a class tag (you should always choose 0)

v. define handler methods

A. void handle data(<DATATYPE> d, IMachine *machine): assign
d to a private member of Grabber using the following way:
static cast<Grabber *>(machine)->member = d;

B. <DATATYPE> get default() {return <A DEFAULT VALUE>;}
vi. for each BORED SLOT you need a BORED SLOT INIT(<NAME>) initializer

in the class constructor

(c) use the initialize grabber() method to allocate data and communication
objects. All configuration data will be available before this method is called.

(d) start grabber() is called right before image acquisition is started (you
probably do not need any code here)

(e) stop grabber() is called right after image acquisition is stopped (you prob-
ably do not need any code here)

(f) use the deinitialize grabber() method to de-allocate everything allo-
cated by initialize grabber()

(g) use the between grabs() method to tell your training system to move to
the next position. Insert code between if and else. The move must be
finished when the method returns.

3. incorporate your new grabber addon into BOR3D and dump

martin@martinbertsche.dyndns.org XI

APPENDIX B. VFH - TRAINING MANUAL

(a) #include your new file at the bottom of <BOR3D ROOT>/include/bor3d/-
3d/grabbers/grabber.h

(b) copy and rename DumpMethod in <BOR3D ROOT>/include/bor3d/3d/use-
case/dump method.h to <METHOD NAME>

(c) change the last template parameter bored:: 3d::grabbers::Table of Grab-
ber in the GrabberType-typedef to bor3d:: 3d::grabbers::<SYSNAME>

(d) in<BOR3D ROOT>/src/examples/pcd2cv dumper/dump.cpp change the Ma-
chineType-typedef to stand for <METHOD NAME> instead of DumpMethod.

(e) change linkage as needed in <BOR3D ROOT>/src/examples/pcd2cv dum-

per/CMakeLists.txt, compile and run.

B.2 Training

Although training can easily be changed to run for the sensor directly the current
version uses *.pcd files generated by dump. Please build training with the following
steps:

1. $> cd <BOR3D ROOT>/build

(a) install all missing dependencies that are reported by CMAKE they should all
be available in the package management system of your Linux distribution.

2. $> make training

3. result: <BOR3D ROOT>/build/src/examples/vfh training/training

Invocation is exactly the same as for dump. Also prompt commands are the same. The
process does not stop on its own. Wait for the *.mdl file to be created. Depending on
the training resolution this can take several hours. Copy the *.mdl file to the desired
location.

XII Martin Bertsche

Appendix C

Recognition Table

Recognition Result Original Scene i

0

1

2

XIII

APPENDIX C. RECOGNITION TABLE

Recognition Result Original Scene i

3

4

5

6

XIV Martin Bertsche

Recognition Result Original Scene i

7

8

9

10

martin@martinbertsche.dyndns.org XV

APPENDIX C. RECOGNITION TABLE

Recognition Result Original Scene i

11

12

13

14

XVI Martin Bertsche

Recognition Result Original Scene i

15

16

17

18

martin@martinbertsche.dyndns.org XVII

APPENDIX C. RECOGNITION TABLE

Recognition Result Original Scene i

19

20

21

22

XVIII Martin Bertsche

Recognition Result Original Scene i

23

24

25

martin@martinbertsche.dyndns.org XIX

APPENDIX C. RECOGNITION TABLE

Recognition Result Original Scene i

26

27

28

XX Martin Bertsche

Recognition Result Original Scene i

29

30

31

32

martin@martinbertsche.dyndns.org XXI

APPENDIX C. RECOGNITION TABLE

Recognition Result Original Scene i

33

34

35

Table C.1: The full recognition table.

XXII Martin Bertsche

	Affidavit
	Introduction
	Motivation
	Approach
	Tools

	Segmentation Algorithms
	Color-based Segmentation
	Scene Interpretation
	Spectral Clustering
	Expectations

	Segmentation Quality
	The 2D World
	Recognition Quality
	An OR Based Quality Metric

	Optimization and Analysis
	Scene Selection
	Generic Parameter Sets
	Segmentation Results

	Conclusion
	Bibliography
	Original Thesis Specification
	Introduction
	Work Packages

	VFH - Training Manual
	Data Acquisition
	Training

	Recognition Table

