
HOCHSCHULE RAVENSBURG-WEINGARTEN

CASE STUDY OF THE SOFTWARE

DEVELOPMENT FOR SAFETY

CRITICAL SYSTEMS

Report on Research Project

Remya Ramachandran

10/04/2010

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 2

Hochschule Ravensburg-Weingarten

Study Program Mechatronics

Field of Research Embedded Computing

Name

Remya Ramachandran

Matr.Nr. 20555

E-Mail

remyarmachandra@gmail.com

Supervisor Mr. Philipp Ertle

Reviewer Prof. Dr.-Ing. Holger Voos

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 3

CONTENTS:

1. INTRODUCTION ---4

2. OBJECTIVE---5

3. SYSTEM DESCRIPTION--6

4. FUNCTIONAL REQUIREMENTS--7

 4.1. INPUT PARAMETERS---7

 4.2. VIOLATION--7

 4.3. ALERT LEVELS--7

 4.4. REACTIONS---7

5. FLOWCHART---9

6. GUIDELINES TO BE ADAPTED FOR CODING--11

7. FORMAL VERIFICATION OF CODE--12

 7.1. COMMERCIAL TOOLS--12

 7.2. OPEN SORCE TOOLS--13

 7.3. SPIN--14

8. REFERENCES---17

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 4

1. INTRODUCTION:

This project intends to study the software development process for the “Safety Board” installed

in the mobile robot “Poineer-3”. The Pioneer is a mobile robot from the company "ActivMedia

Robotics". The Pioneer Family includes the mobile robot Pioneer 1, Pioneer AT, Pioneer 2-DX,

DXF,-CE,-AT, Pioneer 2 --Dx8/Dx8 Plus and -At8/At8 Plus.

The Pioneer 3 have four pneumatic wheels and its maximum speed is 0.7 m / s. The drive has

differential drive i.e. the left and right wheels are independently controlled. This makes it

possible for the robot to rotate on the spot. The ultrasonic distance sensors of the robot enable

it to estimate the surroundings. The robot has a solid aluminum casing and the basic

equipments include DC motors, motor control and Drive electronics and a battery. It can be

further equipped with camera or a laser scanner.

To test the robot can, the Demo -Program "Aria" included. This can be done from the PC using

the arrow keys to move it in the intended direction.

The goal of the ZAFH robot is to learn small service tasks. For example: to bring coffee, to make

tablecloths, articles and so on.

Fig: The ZAFH Mobile Robot “PIONEER-3”

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 5

2. OBJECTIVE:

Robots are mechanical devices with potential for accomplishing much more than just the

desired tasks. These machines can perform physical feats far in excess of human laborers.

Unfortunately for humans in robot environments, the robot cannot think or ‘realize’ that

damaging property and/or threatening human safety is not desirable. A moving robot arm has

no concept of damage, and is not likely to stop before crashing through a retaining wall when

its controlling program directs it to ‘swing to the left through a full 270 degree arc.’ It cannot

possibly ‘know’ that a worker’s hand protrudes between its lifting hook and the object to be

lifted and will be crushed when the lifting action is performed. Such situations must be

anticipated and software developed to accommodate these and similar hazards. The goal here

is hence to conduct a case study into the software development process for a safety critical

component like a differential drive for a service robot.

This study is specifically done on the Safety Board of the ZAFH Service robot. The safety board

would enable the integration of autonomous robots in everyday life and it is fundamental to

provide evidence that certain safety properties and constraints are guaranteed at any case. The

principle aim of the software would be to ensure the redundancy and increased safety of the

drive.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 6

3. SYSTEM DESCRIPTION:

The safety Board provides a real time control for the safety factors by controlling the wheel

drive of the robot. The following is a bird’s eye view of the system.

The Safety Board installed currently makes only a “heartbeat query”. This is done parallel by a

microcontroller and also via a redundant analogue circuit. Only when both the microcontroller

and the redundant analogue circuit provide the correct output is the relay to the differential

drive switched on. This Switching Relay is connected between the control board and motor. As

long as the relay is not activated, no motor current flows. Consequently, the circuit is

interrupted and the robot stops.

An emergency stop button for manual stop is also provided on the board. The motor

PWM signal is taken before the "Motor-Power Distribution Board in order to realize a safe

speed limitation.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 7

4. FUNCTIONAL REQUIREMENT:

The Input signal to the Safety Board is a square wave signal provided from the Robot Control.

Further on, it is described as the ‘heartbeat signal’. The software has to compare this heartbeat

signal with the signal as expected when it is assumed that there is no error. Any variation in the

parameters of the incoming signal from those of the standard signal is interpreted as

‘violations’. On detecting a violation, some corrective or precautionary actions (Reactions) are

carried out and this information is also sent to the Robot Control.

The following terms are defined so as to make the functional requirements more clear, precise

and quantitative.

4.1 INPUT PARAMETERS:

The input parameters are the variable values of the heartbeat signals that have to be constantly

monitored for the detection of error/safety violation. These parameters are maximum level of

the voltage (Vmin), minimum level of voltage (Vmax) and the frequency.

4.2 VIOLATIONS :

Violations are the variations in the Input signal from the standard signal. The violations are

prioritized into levels 1, 2 and 3. Violations of severity level 1 should be acted upon with certain

precautionary actions and if the violation persists for a defined time span ‘t1’ sec it is level is

raised to level 2. On the occurrence of level 2 violations, certain reactions are taken and also it

is checked if the violation is present after a time span ‘t2’ sec. If present, the level is raised to

level 3. Level 3 violations should be immediately acted upon.

4.3 ALERT LEVELS:

Alert Levels contain the information about the state of the robot. They can be two levels Level 1

and Level 2. Level 1 means that the robot is in a “Warning” State while Level 2 means that the

robot is in “Repair” state. A violation of Level 2 creates an alert of level2 and a violation for

level 1 produces an alert of level1.

4.4 REACTIONS:

Reaction is the consequence of a violation, as shown in the Table 1.0

Violation Alert Level Reaction

Level 1 Level 1

“Warning”

Limit the max speed to 75% , Set Alert Level to 1, Inform the

Robot Control

Level 2 Level 2

“Repair”

Limit the max speed to 50% , Set Alert Level to 2, Inform the

Robot Control

Level 3 “Error” Drive set to full stop, Inform the Robot Control

Table 1.0: Reactions expected for different Violations.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 8

 However, in the Version 1, the speed limiting functionality and the information passing are not

realized. In case of a violation, the drive is set to a full stop and the alert level is set. In the

Version 1.1, the information passing function is also realized.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 9

5. FLOWCHART:

 No

 Yes

No

Yes

START

Analyse the

Heartbeat Signal

from the Robot

Control

Violation

present?

A

A

Determine the

Violation Level

Violation

Level =3?

Set the drive to full

stop. Set system in

Error State. Inform the

Robot Control.

STOP

Check the current

Alert Level of the

system

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 10

No

No

Yes Yes

No

Yes

No

Yes Yes

No

Violation

Level=2?

Current Alert

Level=2?

Timer

t2=0?

Set the drive to

full stop. Set

system in Error

State. Inform the

Robot Control.

A

Current Alert

Level=1?
Timer

t1=0?

Set Alert Level

=2. Restrict

Max speed to

50%.Inform RC

A

A

STOP

Set Alert Level =1.

Restrict Max

speed to

75%.Inform RC

Start the decrement Timer t1,

setting the sys Alert level back to

normal on reaching 0

A

Set Alert Level =2.

Restrict Max

speed to

50%.Inform RC

A

Start the

decrement Timer

t2, setting the sys

Alert level back to

normal on

reaching 0

Start the

decrement

Timer t2,

setting the

sys Alert

level back to

normal on

reaching 0

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 11

6. GUIDELINES TO BE ADAPTED FOR CODING:

The main aspect of many of the following guidelines is that it should allow for comprehensive

tool-based compliance checks. Tool-based checks are important because manually reviewing

the hundreds of thousands of lines of code that are written for larger applications is often

infeasible.

The choice of language for safety critical code is in itself a key consideration. Here C is the

preferred language because with its long history, it has extensive tool support, including strong

source code analyzers, logic model extractors, metrics tools, debuggers, test-support tools, and

a choice of mature, stable compilers. The following guidelines primarily target C and attempt to

optimize the ability to more thoroughly check the reliability of critical applications written in C.

(a) Restrict all code to very simple control flow constructs—do not use goto statements,

setjmp or longjmp constructs or direct or indirect recursion. Simpler control flow

translates into stronger capabilities for analysis and often results in improved code

clarity.

(b) All loops must be given a fixed upper bound. It must be trivially possible for a checking

tool to prove statically that the loop cannot exceed a preset upper bound on the

number of iterations. This can prevent the runaway code.

(c) Dynamic Memory allocation is not to be used after initialization. Memory allocators

such as Malloc, and Garbage collectors have unpredictable behavior that can

significantly impact performance.

(d) No function should be longer than what can be printed on a single sheet of paper in a

standard format with one line per statement and one line per declaration. This implies

that each function should be a logical unit that is understandable and verifiable as a

unit.

(e) Declare all data objects at the smallest possible level of scope. This is to enable the basic

principle of data hiding.

(f) The use of preprocessor must be limited to the inclusion of header files and simple

macro definitions.

(g) Assertions must be restricted to two per function. Assertion checks must be used to

check for anomalous conditions that should never happen in real life executions. They

should be side- effect free and should be defined as Boolean tests.

(h) The use of pointers must be restricted. Specifically, not more than one level of

dereferencing should be used.

(i) Each calling function must check the return value of non void functions, and each called

function must check the validity of all parameters provided by the caller.

(j) All code must be compiled, from the first day of development and all code should

compile without warnings. All code must also be checked daily with at least one strong

static source code analyzers.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 12

7. FORMAL VERIFICATION OF CODE:

In traditional methods, errors in hardware and software are discovered empirically, by testing

them in maximum possible expected situations. However, this number of possible situations is

normally so large that it is possible to only exercise a tiny proportion of them. Formal

verification is an alternative that involves trying to prove mathematically that software code

will function as intended.

Software reliability is a very crucial requirement for safety- and security-critical systems. To

achieve this goal, code verification is one of the available options. In recent years, deductive

code verification has improved to a degree that makes it feasible for real-world programs.

Formal code verification methods are logic-based approaches to specify and validate the

software (and hardware) systems, using a language with precise semantics, and usually

including a technique for a mathematical verification of those properties. Theses formal

methods have been proved to be useful in various stages of the software development process

to improve the quality and reliability of software. Unlike the normal testing, formal software

verification covers all possible inputs and every execution path of a program and, thus, is able

to expose any error in the program w.r.t. a given specification.

In one approach, to check whether a program to be verified performs according to its

specification, a logical formula is automatically generated from the source of the program and

the specification. This formula, called verification condition, is rendered in predicate logic and

has the property that, if it is valid, then the program is correct w.r.t. its specification. Finding a

mathematical proof for the validity of this formula, which would serve as a witness for the

correctness of the program, is then a task to be solved by a theorem proving system.

In another approach, the system can verifies some of the properties with the help of an

exhaustive search of all possible states it could enter during its execution. Known popularly as

Model Checking, it checks the hardware and software models whose specification is given by a

temporal logic formula.

7.1 COMMERCIAL TOOLS:

The major commercial players in the area of Formal Verification tools are:

(a) CodeSonar (by Grammatech)

It is an effective tool for spotting code defects and suspicious code fragments. The tool has

been extended with a rule checker for Power of Ten coding rules for safety critical code, which

makes it attractive for high integrity applications. This one is especially good at inter-procedural

analysis. It can be slow on large code bases, but is quite thorough and accurate.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 13

(b) Coverity

A popular tool based on Dawson Engler's methodology for source code analysis of large code

bases. An extended version of the tool (Coverity Extend) supports user-defined properties. The

tool is fast and returns few false positives, but it can be expensive.

(c) KlocWork

It provides support for static error detection, with added project management and project

visualization capabilities. Fast, almost as thorough as Coverity, and not quite as expensive. The

tool is especially good at finding array bound violations. A capability for user-defined checks is

pending.

(d) PolySpace

Polyspace, from TheMathWorks.Inc, claims it can intercept 100% of the runtime errors in C

programs. Main customers of this tool are in the airline industry and the European space

program. No test cases, instrumentation or execution is required. Can be thorough, but also

very slow, and does not scale beyond a few thousand lines of code. Does not support full ANSI-

C language (e.g., it places restrictions on the use of gotos).

(e) PREfix and PREfast (by Microsoft)

PREfix was developed by Jon Pincus; MicroSoft acquired the tool when it bought Pincus'

company. PREfast is a lighter weight tool, developed within Microsoft as a faster alternative to

PREfix (though it is said not to be directly based on PREfix). Both tools are reported to be

effective in intercepting defects early, and come with filtering methods for the output to reduce

false positives. PREfast allows for new defect patterns to be defined via plugins. Less than 10%

of the code of PREfix is said to be concerned with analysis per se, most applies to the filtering

and presentation of output, to reduce the number of false positives.

7.2 OPEN SOURCE TOOLS:

Some very good Open Source tools are also available. The very popular ones are:

(a) Spin

Spin (starting with version 4) provides direct support for the use of embedded C code as part of

model specifications. Spin supports a high level language to specify systems descriptions, called

PROMELA (a PROcess MEta LAnguage). To verify a design, a formal model is built using

PROMELA, Spin's input language. Also, Spin is actively maintained and continuously improved

and updated. It is been claimed by the Spin developers that selected algorithms for a number of

space missions include Deep Space 1, Cassini, the Mars Exploration Rovers, Deep Impact, etc.

were verified with the Spin model checker.

(b) Splint

Short for Secure Programming Lint, Splint is a programming tool for statically checking C

programs for security vulnerabilities and coding mistakes. Formerly called LC Lint, it is a modern

version of the UNIX lint tool. Splint has the ability to interpret special annotations to the source

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 14

code, which gives it stronger checking than is possible just by looking at the source alone. Splint

is free software released under the terms of the GNU General Public License.

(c) Penjili (by EADS Innovation Works)

The tool mainly targets the memory manipulation bugs (array, pointer and stringout-of-bounds)

and arithmetic bugs (integer overflows and division by zero). It can compile most ANSI C (no

backward gotos) namely conditional expression, bitfields, and variable number of arguments.

Also compiles some GNU C. It claims to compile 40 million lines of macro-expanded C in 9

minutes.

(d) C Code Analyzer – CCA

No code annotations or tweaking is required - it's fully automatic. CCA tries to spot only the

errors that can actually cause problems. CCA is licensed under a BSD license. The current

features are: fully automatic user input tracer, memory leak detection, multiple/dangling free

detection, array out of bound accesses and potential buffer overflow detection.

(e) Clang Static Analyzer

The Clang Static Analyzer is source code analysis tool that find bugs in C and Objective-C

programs. Currently it can be run either as a standalone tool or within Xcode. The standalone

tool is invoked from the command-line, and is intended to be run in tandem with a build of a

code base. The analyzer is 100% open source and are part of the Clang project.

A detailed study about the Formal Verification tool “Spin” has been carried out as it is not only

an open source tool but also has comparatively better documentation support and a large

number of internet forums discussing the usage of the tool.

7.3 SPIN:

Some of the features that set Spin apart from related verification systems are:

Spin targets efficient software verification, not hardware verification. The tool supports a high

level language to specify systems descriptions, called PROMELA (a PROcess MEta LAnguage).

Spin has been used to trace logical design errors in distributed systems design, such as

operating systems, data communications protocols, switching systems, concurrent algorithms,

railway signaling protocols, etc. The tool checks the logical consistency of a specification. It

reports on deadlocks, unspecified receptions, flags incompleteness, race conditions, and

unwarranted assumptions about the relative speeds of processes.

Spin (starting with version 4) provides direct support for the use of embedded C code as part of

model specifications. This makes it possible to directly verify implementation level software

specifications, using Spin as a driver and as a logic engine to verify high level temporal

properties.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 15

Spin (starting with version 5) provides direct support for the use of multi-core computers for

model checking runs -- supporting both safety and liveness verifications.

Spin works on-the-fly, which means that it avoids the need to preconstruct a global state graph,

or Kripke structure, as a prerequisite for the verification of system properties.

Spin can be used as a full LTL model checking system, supporting all correctness requirements

expressible in linear time temporal logic, but it can also be used as an efficient on-the-fly

verifier for more basic safety and liveness properties. Many of the latter properties can be

expressed, and verified, without the use of LTL.

Correctness properties can be specified as system or process invariants (using assertions), as

linear temporal logic requirements (LTL), as formal Büchi Automata, or more broadly as general

omega-regular properties in the syntax of never claims.

The tool supports dynamically growing and shrinking numbers of processes, using a rubber

state vector technique.

The tool supports both rendezvous and buffered message passing, and communication through

shared memory. Mixed systems, using both synchronous and asynchronous communications,

are also supported. Message channel identifiers for both rendezvous and buffered channels,

can be passed from one process to another in messages.

The tool supports random, interactive and guided simulation, and both exhaustive and partial

proof techniques, based on either depth-first or breadth-first search. The tool is specifically

designed to scale well, and to handle even very large problem sizes efficiently.

To optimize the verification runs, the tool exploits efficient partial order reduction techniques,

and (optionally) BDD-like storage techniques.

To verify a design, a formal model is built using PROMELA, Spin's input language. PROMELA is a

non-deterministic language, loosely based on Dijkstra's guarded command language notation

and borrowing the notation for I/O operations from Hoare's CSP language.

Spin can be used in four main modes:

• As a simulator, allowing for rapid prototyping with a random, guided, or interactive

simulations

• As an exhaustive verifier, capable of rigorously proving the validity of user specified

correctness requirements (using partial order reduction theory to optimize the search)

• As a proof approximation system that can validate even very large system models with

maximal coverage of the state space.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 16

• As a driver for swarm verification (a new form of swarm computing), which can make

optimal use of large numbers of available compute cores to leverage parallelism and

search diversification techniques, which increases the chance of locating defects in very

large verification models.

All Spin software is written in ANSI standard C, and is portable across all versions of Unix, Linux,

cygwin, Plan9, Inferno, Solaris, Mac, and Windows.

CASE STUDY OF THE SOFTWARE DEVELOPMENT FOR SAFETY CRITICAL SYSTEMS

Remya Ramachandran, Research Project WS 09/10 Page 17

8. REFERENCES:

• Better Avionics Software Reliability by Code Verification; Christoph Baumann, Bernhard

Beckert ,Holger Blasum and Thorsten Bormer Available at http://www.uni-

koblenz.de/~beckert/pub/embeddedworld2009.pdf

• Principles of Program Analysis ,F. Nielson, H. R. Nielson and C. Hankin, Writing Solid

Code, Steve Maguire, Microsoft, 1993.

• Code Complete, Steve McConnell, Microsoft, 1993.

• The Practice of Programming, Kernighan & Pike, Addison-Wesley, 1999.

• C Programming Language (2nd Edition), Kernighan & Ritchie, Prentice Hall, 1988.

• Beautiful Code: Leading Programmers Explain How They Think (Theory in Practice

(O'Reilly))

• The Power of 10:Rules for Developing Safety-Critical Code ,Gerard J. Holzmann; NASA/JPL

Laboratory for Reliable Software

• Internet Websites of the Home pages of the Open source and Commercial Tools.

POLYSPACE http://www.mathworks.de/products/polyspace/

VARVEL http://www.nec.co.jp/techrep/en/journal/g07/n02/070209.html

 SPIN http://spinroot.com/spin/whatispin.html

SPLINT http://splint.org/

CODESONAR http://www.grammatech.com/products/codesonar/

KLOCWORK http:// www.klocwork.com/products/insight/

COVERITY http://www.coverity.com/

PENJILI http://ww.penjili.org/penjili-tool.html

CLANG http://clang.llvm.org/

