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Abstract

As far as we leave the domain of small state and action spaces, we cannot represent
the value function as a table anymore. Generalization is needed. Radial Basis
Functions are often used in reinforcement learning as linear function approximation
to learn a value function. These functions have very good convergence guarantees
and producing very smooth approximations.

This work will give a short introduction to reinforcement learning and function
approximation. Standard Radial Basis Functions and Gaussian Softmax Basis
Function will be compared. The performance of the discussed algorithms will
be applied on two examples: The Mountain Car Task and the Crawling Robot
Task.
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1 The Reinforcement Learning Framework

At the beginning an agent is in an initial state. At each time step the agent
performs an action, the environment returns a new state and a reward. The
environment could be stochastic, that means it is possible to do the same action
in the same state twice and reach a different next state or a different reward. This
could be caused by noisy sensor data, inaccuracy in motor control or a changing
world. The goal for the agent is to find a sequence of actions that maximizes the
cumulative rewards over time. The reinforcement learning framework allows the
agent to learn this sequence through interaction with the environment.

Agent —
—
o
St It
dt
St+] ]
Environment —
o’

Figure 1: The agent-environment interaction [Sutton and Barto, 1998]

1.1 States and Actions

More mathematically the reinforcement learning framework could be described as
following: At a given time t the agent is in a state s; € S and can apply an action
a; € A(s;), where S is the set of all states and A(s;) is a set of all actions possible
in state s;. As a result the agent transfers to a next state s;;1 and receives a
numerical reward! r € R. The received next state and reward are not necessarily
correct. Therefore it could happen that due to noisy sensor data a wrong state is
assumed.

LA negative reward is also oftern called costs



1.2 The Policy

The mapping from states to action is done by the agent’s policy and is denoted by
m(s,a). The policy could be interpreted as the probability of choosing action a in
state s.

w(s,a) = Pr{a=a;|s=s} (1)

1.3 The Markovian System

In reinforcement learning, we generally assume that reaching a successor state
s¢+1 only depends on the current state s; and the action a;, chosen in this state.
This assumption is true for most games like chess or backgammon. All relevant
information is given by the positions of figures on the board, no matter how these
positions had been reached. Such a system is called Markovian system and satisfies
the following equation:

PT{StH,TtH ’ T(SO:t>a0:t)} (2)
= PT{3t+1;7‘t+1 | Staat} (3)

where T'(so., ap.+) denotes the "history” of all previous states sg.; and actions ag..

The Markovian system could be fully described by the set of states S, the set of
actions available in s, A(s) and the transition probability between two states

osr = Pr{si1| st i} (4)

together with the expected value of the next reward

Riy = E{repa | st ap, s} (5)

1.4 Returns

As described before, the agent’s goal is to maximize the reward in the long run. In
this case it is not sufficient to choose the action that returns the highest reward in
the next step. Also action and rewards more far in the future must be considered.

There are two classes of learning problems: If there is a final terminal state sy we
talk about an episodic task. After reaching a terminal state the episode ends and



the system resets to a starting state. In this case we can simply sum up all future
rewards. The expected long term return R; at time ¢ is given by:

Ry =1+ 1o +rg3 -+ +1rp (6)

This approach is impossible for the second class of learning problems - the con-
tinuing tasks. It is not possible to break these tasks into episodes and in contrast
to episodic tasks, there is no terminal state. Rewards in the far future must be
discounted to avoid an infinite sum.

Ry =71 + T2 + 7 rees + o0 = Z Y rerki (7)
k=0

where, the parameter v, 0 < v < 1, is called the discount rate. Future rewards
could be weighted with this parameter.

We can combine both definitions to following equation:

T
R, = Z ’Ykrt+k+1 (8)

k=0

where T' = oo for continuing tasks and v = 1 for episodic tasks.

1.5 Value Functions

Most reinforcement learning algorithms try to estimate how good a given state is,
or how good it is to perform a given action in a certain state. These estimates
are called state-value functions or action-value functions respectively. Normally
the value of a state or action is the expected future reward like described before.
Of course the future reward depends on the agent’s actions. Therefore, the value

functions are defined with respect to a policy. The state-value function can be
defined as

V(s = Bo(Re | 51} = B {i e | } 0

k=0

here, E.{} denotes the expected value, being in state s; and following the policy
7. The action-value functions look’s similar:

Q"(st,ar) = E{R:|si,ai} (10)
= E; {Z Vorieren | se, at} (11)
k=0



A very important property of value functions is the relation between a state and
its possible successor states. This relation is described by the Bellman equation
for state-value functions?:

VT(s) = Son(s,0) X Pi Ry + V(o) (12)

and for action-value functions:

Q™(s,a) = Y Py |Riy+vd_w(s,d)Q7(s' a) (13)

The variables PZ,, Re, and 7 averages over all possibilities and weight the values

ss’

by its probability of occurrence.

1.6 Temporal Difference Learning

One of the most successful algorithms in the last few years was temporal differ-
ence learning (TD). This algorithm tries to calculate the value function with the
temporal error in the current estimation:

0" =1+ 7Vﬁ(5t+1) - VW(St) (14)

This can now used as an update for the state-value functions and action-value
functions. Here V™ denotes that this is an estimate, not the true value function.
TD learning need to wait until the timestep ¢ + 1 to get the reward r,,; and the
next state s;;; and then performs the update for timestep t.

Initialize V(s) arbitrarily , m to the policy
Repeat (for each episode)
Init s
Repeat (for each step of episode):
a«+— action given by m for s
Take action a, observe r, s
V(s) — V(s)+a[r +~yV(s') = V(s)]
s s

until s is terminal

Listing 1: Tabular TD(0)

2See [Sutton and Barto, 1998, Chapter 3.7] for the full proof



The parameter 0 < o <=1 is used to weight the current observation or to define
how reliable the sensor-information is. This is called the learning rate and could
also depend on time.

This algorithm could be easily reformulated for action-value functions. For a de-
tailed explanation of SARSA and Q-learning see [Sutton and Barto, 1998, Chapter
6.4 and 6.5].



2 Function Approximation

For continuous or large discrete state spaces it is no longer possible to store the
value function in a table. Function approximation is needed to generalize and
interpolate over states. From now on the value function V; is an approximation
with parameter vector 0,. That means V, is totally depending on 0,. The advantage
is that the number of components of 0, is typically much less than the number of
states.

Normally we try to minimize the mean-squared error (MSE) between the approx-
imated function V; and the true value function V7.

MSE@) = X P)[V7(s) V(o)) (15)

seES

where P is a distribution weighting the errors of different states. This is necessary
because it is usually impossible (or undesired) to reduce the error to 0 at all states.
The objective is to find a parameter vector 6* for which MSE(6*) < MSE() for
all possible 0. This is the global optimum and not always possible. But we can try
to converge to a local optimum where the above equation is not true for all 5, but
for those in some neighborhood of g*.

2.1 Gradient-Descent Methods

One general mathematical approach to minimize the function M SE (9:) is gradient
descent. After each observed example gradient descent adjusts the parameter
vector a small amount in the direction to the negative gradient. We can only
do small adjustments of the parameters, because big steps could affect the value
function in an unstable way. This is especially in the topic of robotics extremely
dangerous.

. L1 2
Ior = -0 {V”(st)—%(st)] (16)

= G +a {V’T(st) _ V}(st)} V; Vilsi) (17)

This algorithm is proven to converge to a local optimum if the learning rate «
satisfies the following properties depending on time ¢:

Y =00 D i < o0 (18)
=0 =0



2.2 Linear Function Approximation

A very common way in reinforcement learning is the use of linear function approx-
imations. These functions are very easy to learn and can generalize over states.
It is called linear, because the approximate function V; is a linear function of the
parameter vector 9: That means for every state s, there is a feature vector ¢(s)
of the same length as 6. The value of the function is then calculated with:

Vi(s) = 6] - ¢(s) = 291' - pi(s) (19)

where ¢;(s) is called the activation function and 6; is the weight of the feature 4.

For gradient-decent on linear function approximation we can easily calculate the
gradient with respect to 6, as

—

Vi, Vi(s) = o(s). (20)

In the linear case there is only one optimum 0 and this method is guaranteed
to converge to or near the global optimum. Therefore these techniques are very
favorable in the learning task. Some popular methods are Coarse Coding, Tile
Coding, RBF-Networks and Gaussian Softmax Basis Function Networks. For a
detailed discussion of the last two approaches see section 3. We can also see
tables as a special case of linear function approximation where 6; is a single index
representing state i and ¢(s) is a vector where only the i element is 1.0 and all
others are 0.0.

10
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2.3 TD-Learning with Function Approximation

We can easily reformulate the standard temporal difference learning algorithms
with the help of Equation 16. Now not the value-function itself will be updated,
but the elements of the parameter vector g according to the gradient of the error
function.

In all algorithm the vector € is used as a eligibility trace® for active features. The
variable \ is the trace-decay parameter to shift the e-trace between the one-step

TD update (A = 0) and the full Monte Carlo® update (A = 1). The variable 7 is
the normal discount rate like mentioned before and « is the learning rate.

2.3.1 Gradient Descent TD()\)

Initialize 6 arbitrarily
Repeat (for each episode)
=0
s« initial state of episode
Repeat (for each step of episode):
a <+ action given by 7 for s
Take action a, observe r, s
§—r+V(s)—V(s)
€ — YA+ VgV(S)
0 — 0+ ade
s« s

until s is terminal

Listing 2: Gradient Descent TD(\)

3For an detailed explanation of eligibility traces see [Sutton and Barto, 1998, Chapter 7.2]
4Monte Carlo Methods are based on averaging a lot of samples to solve the reinforcement
learning problem. They are also introduced in [Sutton and Barto, 1998, Chapter 5]
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2.3.2 Gradient Descent SARSA()\)

Initialize 6 arbitrarily

s,a+« initial state and action
Repeat (for each episode)

Take action a, observe r, s

Choose @ from w(s’)
§—r+vQ(s',ad) — Q(s,a)
€ — v e+ VQ(s,a)

0 — 0 + ase

s,a «— s, a

until s is terminal

Listing 3: Gradient Descent SARSA(A)

2.3.3 Gradient Descent Watkins’s Q()\)

Initialize 6 arbitrarily

s,a«+ initial state and action
Repeat (for each episode)

Take action a, observe r, s

Choose o from n(s')

a* « argmax, Q(s',b)
o1+ 7@(5/7 CL*) - Q(57 CL)
€ —yAe+ VQ(s,a)

0 — 0+ ase

if o not «*, then =0

s,a «— s, a

until s is terminal

Listing 4: Gradient Descent Watkins’s Q(\)

12



3 RBF-Networks

A Radial Basis Function network is a simple 3-layer network as shown in Figure 2.
The input layer is a simple fan-out layer and does no processing. The second layer
consists of Gaussian kernels, weighting the distance between the input and the
center of the kernel, typically called the activation function of the kernel. The
final layer is the weighted sum of its inputs with a linear output.

Figure 2: A typical Radial Basis Function network

The advantages of RBF-Networks are, that the single features are no longer limited
to be 1 or 0. Now each feature can be any value in the interval [0, 1]. Usually there
is more than 1 feature active, unlike in the tabular case®. Doya used in [Doya and
Morimoto| modified RBF networks to learn a stand-up task for a robot.

The activation function of the i** Gaussian kernel given some input vector # could
be calculated by

n

fi; is the center of the i*" kernel location and & is the width of the i kernel. In
Figure 3 is an example for 3 one dimensional Gaussian kernels, all with o = 0.5
and centers on 0, 1, 2 respectively drawn with a dotted line. The weights for the
kernels are 0.4, 0.9 and 0.9. The black solid line denotes the weighted sum of all
3 activation functions. If o becomes higher, then the shape of the kernel becomes
wider.

5To work proper, there should be at least two active features per state

13



1.5
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— — —Kernel 2
— — —Kernel 3
Netoutput

Activation Function

_05 1 1 1 1 1 1 1 1
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Figure 3: Three one dimensional Gaussian kernels. The weights for the kernels are
0.4, 0.9 and 0.9. The black solid line denotes the weighted sum of all.

—g=03 == g=05 = = =0=08

Figure 4: Adjusting the width of a kernel with parameter o. 0.3, 0.5, 0.8 from left
to right.
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Figure 5: A two dimensional Gaussian kernel

3.1 Gaussian Softmax Basis Function Networks (GSBFN)

GSBFNs or Normalized Radial Basis Functions are slightly modified RBFs, where
the sum all features is normalized to 1.0. This results in a better interpolation
in regions where fewer kernels located as shown in Figure 6. We can modify the
standard activation function calculation in Equation 23 to

j=1

(22)
with

U,(%) = exp (— Xn: W) . (23)

A GSBFN is still a linear function approximation, there the value function can
still be calculated as described in section 2 by

—

Vi(s) = 9? . q;(s) = %Hi - ¢i(s) and gradient V(;tVt(s) = ¢(s)

15



Normalized RBF Radial Basis Function
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Figure 6: Examples of GSBFNs (left) and RBFs (right) and the resulting value
functions. The red circles are samples of the desired function. Green are the single
RBF functions and blue is the approximation.
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4 Experimental Results

4.1 The Mountain Car Task

The Mountain Car Task was first introduces by [Moore, 1990] and the goal is to
drive an underpowered car up a hill. The problem is, that the force of gravity is
stronger than the car’s engine. Even at full throttle the car cannot accelerate up
the slope. Therefore the agent must first drive in the opposite direction and up the
slope on the left. Then, applying full throttle, the agent can reach enough velocity
to drive up to the goal. There are three possible actions: full throttle forward (+1),
full throttle reverse (—1) and zero throttle (0). The reward is —1 everywhere until
the car moves past the goal position. The agent’s state, s = [z, 2]7, is described
by two continuous variables: The position and velocity of the car. These variables
are updated by

Tyl — X4 + Zt’t+1 (24)
Ztt+1 = j/'t + OOOlat —0.0025 COS(S.Tt) (25)

where the position and velocity are limited to —1.2 < 2,7 < 0.5 and —0.07 <
11 < 0.07 respectively. If the car hits the wall on the left, its velocity is set to 0.
See Figure 7 for a schemantic of the Mountain Car Task.

17
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Figure 7: Schematic of the Mountain Car Task

4.1.1 The Solution

To solve this problem, Gradient Descent Q(\) was used. The eligibility updates
were done according to Watkins learning algorithm. Gaussian Softmax Basis Func-
tion Networks were used as a linear function approximation like described before.
100 NRBFs were uniform distributed over the state space with a width of 0.5. The
learning rate a was set to 0.5 and the temporal credit assignment parameter, A,
was set to 0.95. Exploration can be encouraged by setting the exploration and the
initial value function to zero.

Figure 8 shows the number of steps the agent needs to reach the goal, averaged
over 30 episodes.

Figure 9 shows the negative of max, Q(s, a). This function expresses the cost-to-go
from each state.

18
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4.2 A simple Crawling Robot

The second benchmark is a small crawling robot first introduced in [Kimura et al.,
1997]. The robot has 2 joints, one to move the arm horizontal, and the other to
move it vertical. The agent’s goal is to move the body forward. Putting the arm to
the ground and moving it to the body could do this. This will result in a positive
reward for the agent. A movement in the opposite direction will punish the agent
with a negative reward.

Figure 10: A small crawling robot

The state, s = [z,y|T, represent the position of the tip of the arm. There are
4 possible actions for the robot in each state: right ([1,0]T), left ([—1,0]7), up
([0,1]7) and down ([0, —1]"). The Robot can move its arm from 1 to 5 in both
axes. The robot receives a reward of +1 for a movement to the left and a reward
of —1 for a movement to the right. The pit hits the ground at Y — Position < 2.5.
If the robot tries to move its arm outside the valid range, the arm will remain in
the current position and a reward of —1 will be the result.

The state update is done by
St41 = St + ap + Wy (26)

were w; is a noise vector to simulate inaccuracy in motor control and measurement.
The noise is normally distributed with zero mean and a specified sigma value:
N(0,0)

4.2.1 The Solution

For this simple task it was sufficient to use only 30 uniform distributed NRBs with
a width of 0.75 to achieve a good result.

The value function for each of the 4 actions (right, left, up and down) are drawn
in Figure 11. At each position the action with the highest value is taken. For
instance, at position [5,1]7 the robot will move its arm up, at position [5,3]7 the

20
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Figure 11: The 4 value functions for the Crawling Task.
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Figure 12: A typical trajectory
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Figure 13: The max, Q(s,a) function for the crawling robot

X-POS 8 0

X-POS

robot will move the arm to the left etc. Figure 12 shows a typical trajectory. We
can also see the punishment for the invalid actions. This is most obvious for the
movements to the right at positions [5, *|7.

Figure 13 shows the value function for the optimal policy. The gab between 2 and
3 is very clear. This is due to the fact, that the robot will receive no reward if the
arm is higher than 2.4.

22
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